pcl 은 교체 의 가장 가 까 운 점 을 사용 합 니 다.
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);
// Fill in the CloudIn data
cloud_in->width = 5;
cloud_in->height = 1;
cloud_in->is_dense = false;
cloud_in->points.resize (cloud_in->width * cloud_in->height);
for (size_t i = 0; i < cloud_in->points.size (); ++i)
{
cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}
std::cout << "Saved " << cloud_in->points.size () << " data points to input:"
<< std::endl;
for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " <<
cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<
cloud_in->points[i].z << std::endl;
*cloud_out = *cloud_in;
std::cout << "size:" << cloud_out->points.size() << std::endl;
for (size_t i = 0; i < cloud_in->points.size (); ++i)
cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;
std::cout << "Transformed " << cloud_in->points.size () << " data points:"
<< std::endl;
for (size_t i = 0; i < cloud_out->points.size (); ++i)
std::cout << " " << cloud_out->points[i].x << " " <<
cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputCloud(cloud_in);
icp.setInputTarget(cloud_out);
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);
std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
return (0);
}
해명 하 다.
우리 가 사용 할 클래스 의 모든 헤더 파일 을 포함 합 니 다.
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>
두 개의 pcl 을 만 들 었 습 니 다:PointCloud
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);
무 작위 데이터 생 성
// Fill in the CloudIn data
cloud_in->width = 5;
cloud_in->height = 1;
cloud_in->is_dense = false;
cloud_in->points.resize (cloud_in->width * cloud_in->height);
for (size_t i = 0; i < cloud_in->points.size (); ++i)
{
cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}
std::cout << "Saved " << cloud_in->points.size () << " data points to input:"
<< std::endl;
for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " <<
cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<
cloud_in->points[i].z << std::endl;
*cloud_out = *cloud_in;
std::cout << "size:" << cloud_out->points.size() << std::endl;
이 어 점 클 라 우 드 에 대한 간단 한 강제 변환 을 실행 하고 데이터 값 을 다시 출력 합 니 다.
for (size_t i = 0; i < cloud_in->points.size (); ++i)
cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;
std::cout << "Transformed " << cloud_in->points.size () << " data points:"
<< std::endl;
for (size_t i = 0; i < cloud_out->points.size (); ++i)
std::cout << " " << cloud_out->points[i].x << " " <<
cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;
Iterative Closestpoint 라 는 인 스 턴 스 를 만 들 고 효과 적 인 정 보 를 제공 합 니 다.
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputCloud(cloud_in);
icp.setInputTarget(cloud_out);
이 어 pcl::PointCloud
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);
std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
실행 프로그램
./iterative_closest_point
결실
Saved 5 data points to input:
0.352222 -0.151883 -0.106395
-0.397406 -0.473106 0.292602
-0.731898 0.667105 0.441304
-0.734766 0.854581 -0.0361733
-0.4607 -0.277468 -0.916762
size:5
Transformed 5 data points:
1.05222 -0.151883 -0.106395
0.302594 -0.473106 0.292602
-0.0318983 0.667105 0.441304
-0.0347655 0.854581 -0.0361733
0.2393 -0.277468 -0.916762
[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample
selection distance threshold of: 0.200928
[pcl::IterativeClosestPoint::computeTransformation] Number of
correspondences 4 [80.000000%] out of 5 points [100.0%], RANSAC rejected:
1 [20.000000%].
[pcl::IterativeClosestPoint::computeTransformation] Convergence reached.
Number of iterations: 1 out of 0. Transformation difference: 0.700001
has converged:1 score: 1.95122e-14
1 4.47035e-08 -3.25963e-09 0.7
2.98023e-08 1 -1.08499e-07 -2.98023e-08
1.30385e-08 -1.67638e-08 1 1.86265e-08
0 0 0 1
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
[데이터 구조 와 알고리즘] 재 귀 와 교체 의 통용 전환 사상 에 깊이 들 어가 기 쉽다.따라서 재 귀 하 는 사상 은 함수 나 서브 과정의 내부 에서 자신의 알고리즘 을 직접 또는 간접 적 으로 호출 하여 문 제 를 규모 가 축 소 된 같은 문제 의 서브 문제 로 전환 시 키 는 것 이다. 우 리 는 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.