파 이 썬 기반 입자 필터 효과 구현
(1)작은 차 한 대가 평면 에서 운동 한다 고 가정 하면 시작 좌 표 는[0,0]이 고 운동 속 도 는 1m/s 이 며 가속도 가 0.1 m/s 2m/s^2m/s2 이 며 다음 과 같은 상태 방정식 을 만 들 수 있다.
Y = A ∗ X + B ∗ U Y=A*X+B*U Y=A∗X+B∗U
U 속도 와 가속도 의 행렬
U = [ 1 0.1 ] U= \begin{bmatrix} 1 \\ 0.1\\ \end{bmatrix} U=[10.1]
X 현재 시각 좌표,속도,가속도
X = [ x y y a w V ] X= \begin{bmatrix} x \\ y \\ yaw \\ V \end{bmatrix} X=⎣⎢⎢⎡xyyawV⎦⎥⎥⎤
Y 는 다음 시간의 상태 입 니 다.
관찰 행렬 A 는:
A = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ] A= \begin{bmatrix} 1&0 & 0 &0 \\ 0 & 1 & 0&0 \\ 0 & 0 &1 &0 \\ 0&0 & 0 &0 \end{bmatrix} A=⎣⎢⎢⎡1000010000100000⎦⎥⎥⎤
행렬 B 는 소형 차 의 운동 규칙 을 결정 한다.여기 서 B 를:
B = [ c o s ( x ) ∗ t 0 s i n ( x ) ∗ t 0 0 t 1 0 ] B= \begin{bmatrix} cos(x)*t &0\\ sin(x)*t &0\\ 0&t\\ 1&0 \end{bmatrix} B=⎣⎢⎢⎡cos(x)∗tsin(x)∗t0100t0⎦⎥⎥⎤
python 프로 그래 밍 은 소형 차 의 운동 궤적 을 실현 합 니 다:
"""
Particle Filter localization sample
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
# Particle filter parameter
NP = 100 # Number of Particle
NTh = NP / 2.0 # Number of particle for re-sampling
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
def motion_model(x, u):
F = np.array([[1.0, 0, 0, 0],
[0, 1.0, 0, 0],
[0, 0, 1.0, 0],
[0, 0, 0, 0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT],
[1.0, 0.0]])
x = F.dot(x) + B.dot(u)
return x
def main():
print(__file__ + " start!!")
time = 0.0
# State Vector [x y yaw v]'
x_true = np.zeros((4, 1))
x = []
y = []
while SIM_TIME >= time:
time += DT
u = calc_input()
x_true = motion_model(x_true, u)
x.append(x_true[0])
y.append(x_true[1])
plt.plot(x,y, "-b")
if __name__ == '__main__':
main()
실행 결과:2.관측 데이터 생 성
실제 운용 에서 우 리 는 소형 차 의 위 치 를 포 지 셔 닝 해 야 한다.좌표계 에 4 개의 관측 점 이 있다 고 가정 하면 소형 차 가 운동 하 는 과정 에서 정기 적 으로 소형 차 가 이 4 개의 관측 점 에서 의 위치 거 리 를 기록 해 야 한다.그러면 소형 차 가 다음 에 흔적 을 찾 을 때 참고 점 이 있다.
def observation(x_true, xd, u, rf_id):
x_true = motion_model(x_true, u)
# add noise to gps x-y
z = np.zeros((0, 3))
for i in range(len(rf_id[:, 0])):
dx = x_true[0, 0] - rf_id[i, 0]
dy = x_true[1, 0] - rf_id[i, 1]
d = math.hypot(dx, dy)
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5
ud = np.array([[ud1, ud2]]).T
xd = motion_model(xd, ud)
return x_true, z, xd, ud
3.입자 필터 실현
#
def gauss_likelihood(x, sigma):
p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
math.exp(-x ** 2 / (2 * sigma ** 2))
return p
def pf_localization(px, pw, z, u):
"""
Localization with Particle filter
"""
for ip in range(NP):
x = np.array([px[:, ip]]).T
w = pw[0, ip]
#
ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5
ud = np.array([[ud1, ud2]]).T
x = motion_model(x, ud)
#
for i in range(len(z[:, 0])):
dx = x[0, 0] - z[i, 1]
dy = x[1, 0] - z[i, 2]
pre_z = math.hypot(dx, dy)
dz = pre_z - z[i, 0]
w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0]))
px[:, ip] = x[:, 0]
pw[0, ip] = w
pw = pw / pw.sum() #
x_est = px.dot(pw.T)
p_est = calc_covariance(x_est, px, pw)
#
N_eff = 1.0 / (pw.dot(pw.T))[0, 0]
#
if N_eff < NTh:
px, pw = re_sampling(px, pw)
return x_est, p_est, px, pw
def re_sampling(px, pw):
"""
low variance re-sampling
"""
w_cum = np.cumsum(pw)
base = np.arange(0.0, 1.0, 1 / NP)
re_sample_id = base + np.random.uniform(0, 1 / NP)
indexes = []
ind = 0
for ip in range(NP):
while re_sample_id[ip] > w_cum[ind]:
ind += 1
indexes.append(ind)
px = px[:, indexes]
pw = np.zeros((1, NP)) + 1.0 / NP # init weight
return px, pw
4.전체 소스 코드이 코드 는https://github.com/AtsushiSakai/PythonRobotics
"""
Particle Filter localization sample
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot
# Estimation parameter of PF
Q = np.diag([0.2]) ** 2 # range error
R = np.diag([2.0, np.deg2rad(40.0)]) ** 2 # input error
# Simulation parameter
Q_sim = np.diag([0.2]) ** 2
R_sim = np.diag([1.0, np.deg2rad(30.0)]) ** 2
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
# Particle filter parameter
NP = 100 # Number of Particle
NTh = NP / 2.0 # Number of particle for re-sampling
show_animation = True
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
def observation(x_true, xd, u, rf_id):
x_true = motion_model(x_true, u)
# add noise to gps x-y
z = np.zeros((0, 3))
for i in range(len(rf_id[:, 0])):
dx = x_true[0, 0] - rf_id[i, 0]
dy = x_true[1, 0] - rf_id[i, 1]
d = math.hypot(dx, dy)
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise
zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5
ud = np.array([[ud1, ud2]]).T
xd = motion_model(xd, ud)
return x_true, z, xd, ud
def motion_model(x, u):
F = np.array([[1.0, 0, 0, 0],
[0, 1.0, 0, 0],
[0, 0, 1.0, 0],
[0, 0, 0, 0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT],
[1.0, 0.0]])
x = F.dot(x) + B.dot(u)
return x
def gauss_likelihood(x, sigma):
p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \
math.exp(-x ** 2 / (2 * sigma ** 2))
return p
def calc_covariance(x_est, px, pw):
"""
calculate covariance matrix
see ipynb doc
"""
cov = np.zeros((3, 3))
n_particle = px.shape[1]
for i in range(n_particle):
dx = (px[:, i:i + 1] - x_est)[0:3]
cov += pw[0, i] * dx @ dx.T
cov *= 1.0 / (1.0 - pw @ pw.T)
return cov
def pf_localization(px, pw, z, u):
"""
Localization with Particle filter
"""
for ip in range(NP):
x = np.array([px[:, ip]]).T
w = pw[0, ip]
# Predict with random input sampling
ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5
ud = np.array([[ud1, ud2]]).T
x = motion_model(x, ud)
# Calc Importance Weight
for i in range(len(z[:, 0])):
dx = x[0, 0] - z[i, 1]
dy = x[1, 0] - z[i, 2]
pre_z = math.hypot(dx, dy)
dz = pre_z - z[i, 0]
w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0]))
px[:, ip] = x[:, 0]
pw[0, ip] = w
pw = pw / pw.sum() # normalize
x_est = px.dot(pw.T)
p_est = calc_covariance(x_est, px, pw)
N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number
if N_eff < NTh:
px, pw = re_sampling(px, pw)
return x_est, p_est, px, pw
def re_sampling(px, pw):
"""
low variance re-sampling
"""
w_cum = np.cumsum(pw)
base = np.arange(0.0, 1.0, 1 / NP)
re_sample_id = base + np.random.uniform(0, 1 / NP)
indexes = []
ind = 0
for ip in range(NP):
while re_sample_id[ip] > w_cum[ind]:
ind += 1
indexes.append(ind)
px = px[:, indexes]
pw = np.zeros((1, NP)) + 1.0 / NP # init weight
return px, pw
def plot_covariance_ellipse(x_est, p_est): # pragma: no cover
p_xy = p_est[0:2, 0:2]
eig_val, eig_vec = np.linalg.eig(p_xy)
if eig_val[0] >= eig_val[1]:
big_ind = 0
small_ind = 1
else:
big_ind = 1
small_ind = 0
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
# eig_val[big_ind] or eiq_val[small_ind] were occasionally negative
# numbers extremely close to 0 (~10^-20), catch these cases and set the
# respective variable to 0
try:
a = math.sqrt(eig_val[big_ind])
except ValueError:
a = 0
try:
b = math.sqrt(eig_val[small_ind])
except ValueError:
b = 0
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind])
rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2]
fx = rot.dot(np.array([[x, y]]))
px = np.array(fx[0, :] + x_est[0, 0]).flatten()
py = np.array(fx[1, :] + x_est[1, 0]).flatten()
plt.plot(px, py, "--r")
def main():
print(__file__ + " start!!")
time = 0.0
# RF_ID positions [x, y]
rf_id = np.array([[10.0, 0.0],
[10.0, 10.0],
[0.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw v]'
x_est = np.zeros((4, 1))
x_true = np.zeros((4, 1))
px = np.zeros((4, NP)) # Particle store
pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight
x_dr = np.zeros((4, 1)) # Dead reckoning
# history
h_x_est = x_est
h_x_true = x_true
h_x_dr = x_true
while SIM_TIME >= time:
time += DT
u = calc_input()
x_true, z, x_dr, ud = observation(x_true, x_dr, u, rf_id)
x_est, PEst, px, pw = pf_localization(px, pw, z, ud)
# store data history
h_x_est = np.hstack((h_x_est, x_est))
h_x_dr = np.hstack((h_x_dr, x_dr))
h_x_true = np.hstack((h_x_true, x_true))
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
for i in range(len(z[:, 0])):
plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k")
plt.plot(rf_id[:, 0], rf_id[:, 1], "*k")
plt.plot(px[0, :], px[1, :], ".r")
plt.plot(np.array(h_x_true[0, :]).flatten(),
np.array(h_x_true[1, :]).flatten(), "-b")
plt.plot(np.array(h_x_dr[0, :]).flatten(),
np.array(h_x_dr[1, :]).flatten(), "-k")
plt.plot(np.array(h_x_est[0, :]).flatten(),
np.array(h_x_est[1, :]).flatten(), "-r")
plot_covariance_ellipse(x_est, PEst)
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main()
파 이 썬 기반 입자 필터 에 관 한 이 글 은 여기까지 소개 되 었 습 니 다.파 이 썬 구현 입자 필터 에 관 한 더 많은 내용 은 이전 글 을 검색 하거나 아래 의 관련 글 을 계속 찾 아 보 세 요.앞으로 도 많은 응원 부 탁 드 리 겠 습 니 다!
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
Python의 None과 NULL의 차이점 상세 정보그래서 대상 = 속성 + 방법 (사실 방법도 하나의 속성, 데이터 속성과 구별되는 호출 가능한 속성 같은 속성과 방법을 가진 대상을 클래스, 즉 Classl로 분류할 수 있다.클래스는 하나의 청사진과 같아서 하나의 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.