Java 액세스 Hadoop 분산 파일 시스템 HDFS 구성 설명
m103은hdfs 서비스 주소로 바꿉니다.
Java 클라이언트를 이용하여 HDFS의 파일을 액세스하려면 프로필hadoop-0.20.2/conf/core-site를 사용해야 합니다.xml입니다. 처음에 저는 이곳에서 큰 손해를 보았기 때문에 HDFS를 죽도록 연결할 수 없어서 파일을 만들고 읽을 수 없습니다.
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!--- global properties -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/zhangzk/hadoop</value>
<description>A base for other temporary directories.</description>
</property>
<!-- file system properties -->
<property>
<name>fs.default.name</name>
<value>hdfs://linux-zzk-113:9000</value>
</property>
</configuration>
설정 항목:hadoop.tmp.dir는 명명 노드에 메타데이터를 저장하는 디렉터리 위치를 표시하고, 데이터 노드에 대해서는 이 노드에 파일 데이터를 저장하는 디렉터리를 표시합니다.구성 항목: fs.default.name은 이름이 지정된 IP 주소와 포트 번호를 나타냅니다. 기본값은 file://입니다. JavaAPI의 경우 HDFS를 연결하려면 여기에 설정된 URL 주소를 사용해야 합니다. 데이터 노드의 경우 데이터 노드가 이 URL을 통해 이름 노드에 접근해야 합니다.
hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--Autogenerated by Cloudera Manager-->
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///mnt/sdc1/dfs/nn</value>
</property>
<property>
<name>dfs.namenode.servicerpc-address</name>
<value>m103:8022</value>
</property>
<property>
<name>dfs.https.address</name>
<value>m103:50470</value>
</property>
<property>
<name>dfs.https.port</name>
<value>50470</value>
</property>
<property>
<name>dfs.namenode.http-address</name>
<value>m103:50070</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.blocksize</name>
<value>134217728</value>
</property>
<property>
<name>dfs.client.use.datanode.hostname</name>
<value>false</value>
</property>
<property>
<name>fs.permissions.umask-mode</name>
<value>022</value>
</property>
<property>
<name>dfs.namenode.acls.enabled</name>
<value>false</value>
</property>
<property>
<name>dfs.block.local-path-access.user</name>
<value>cloudera-scm</value>
</property>
<property>
<name>dfs.client.read.shortcircuit</name>
<value>false</value>
</property>
<property>
<name>dfs.domain.socket.path</name>
<value>/var/run/hdfs-sockets/dn</value>
</property>
<property>
<name>dfs.client.read.shortcircuit.skip.checksum</name>
<value>false</value>
</property>
<property>
<name>dfs.client.domain.socket.data.traffic</name>
<value>false</value>
</property>
<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>
</property>
<property>
<name>fs.http.impl</name>
<value>com.scistor.datavision.fs.HTTPFileSystem</value>
</property>
</configuration>
mapred-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--Autogenerated by Cloudera Manager-->
<configuration>
<property>
<name>mapreduce.job.split.metainfo.maxsize</name>
<value>10000000</value>
</property>
<property>
<name>mapreduce.job.counters.max</name>
<value>120</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress</name>
<value>true</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.type</name>
<value>BLOCK</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>zlib.compress.level</name>
<value>DEFAULT_COMPRESSION</value>
</property>
<property>
<name>mapreduce.task.io.sort.factor</name>
<value>64</value>
</property>
<property>
<name>mapreduce.map.sort.spill.percent</name>
<value>0.8</value>
</property>
<property>
<name>mapreduce.reduce.shuffle.parallelcopies</name>
<value>10</value>
</property>
<property>
<name>mapreduce.task.timeout</name>
<value>600000</value>
</property>
<property>
<name>mapreduce.client.submit.file.replication</name>
<value>1</value>
</property>
<property>
<name>mapreduce.job.reduces</name>
<value>24</value>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>256</value>
</property>
<property>
<name>mapreduce.map.speculative</name>
<value>false</value>
</property>
<property>
<name>mapreduce.reduce.speculative</name>
<value>false</value>
</property>
<property>
<name>mapreduce.job.reduce.slowstart.completedmaps</name>
<value>0.8</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>m103:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>m103:19888</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.https.address</name>
<value>m103:19890</value>
</property>
<property>
<name>mapreduce.jobhistory.admin.address</name>
<value>m103:10033</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<property>
<name>mapreduce.am.max-attempts</name>
<value>2</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>mapreduce.job.ubertask.enable</name>
<value>false</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx1717986918</value>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx1717986918</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx2576980378</value>
</property>
<property>
<name>yarn.app.mapreduce.am.admin.user.env</name>
<value>LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native:$JAVA_LIBRARY_PATH</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name>
<value>2048</value>
</property>
<property>
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>3072</value>
</property>
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>1</value>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>$HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,$MR2_CLASSPATH,$CDH_HCAT_HOME/share/hcatalog/*,$CDH_HIVE_HOME/lib/*,/etc/hive/conf,/opt/cloudera/parcels/CDH/lib/udps/*</value>
</property>
<property>
<name>mapreduce.admin.user.env</name>
<value>LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native:$JAVA_LIBRARY_PATH</value>
</property>
<property>
<name>mapreduce.shuffle.max.connections</name>
<value>80</value>
</property>
</configuration>
JavaAPI를 사용하여 HDFS의 파일 및 디렉토리에 액세스
package com.demo.hdfs;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.util.Progressable;
/**
* @author zhangzk
*
*/
public class FileCopyToHdfs {
public static void main(String[] args) throws Exception {
try {
//uploadToHdfs();
//deleteFromHdfs();
//getDirectoryFromHdfs();
appendToHdfs();
readFromHdfs();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
finally
{
System.out.println("SUCCESS");
}
}
/** HDFS */
private static void uploadToHdfs() throws FileNotFoundException,IOException {
String localSrc = "d://qq.txt";
String dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt";
InputStream in = new BufferedInputStream(new FileInputStream(localSrc));
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst), new Progressable() {
public void progress() {
System.out.print(".");
}
});
IOUtils.copyBytes(in, out, 4096, true);
}
/** HDFS */
private static void readFromHdfs() throws FileNotFoundException,IOException {
String dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt";
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
FSDataInputStream hdfsInStream = fs.open(new Path(dst));
OutputStream out = new FileOutputStream("d:/qq-hdfs.txt");
byte[] ioBuffer = new byte[1024];
int readLen = hdfsInStream.read(ioBuffer);
while(-1 != readLen){
out.write(ioBuffer, 0, readLen);
readLen = hdfsInStream.read(ioBuffer);
}
out.close();
hdfsInStream.close();
fs.close();
}
/** append HDFS ; : , hdfs-site.xml <property><name>dfs.append.support</name><value>true</value></property>*/
private static void appendToHdfs() throws FileNotFoundException,IOException {
String dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt";
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
FSDataOutputStream out = fs.append(new Path(dst));
int readLen = "zhangzk add by hdfs java api".getBytes().length;
while(-1 != readLen){
out.write("zhangzk add by hdfs java api".getBytes(), 0, readLen);
}
out.close();
fs.close();
}
/** HDFS */
private static void deleteFromHdfs() throws FileNotFoundException,IOException {
String dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq-bak.txt";
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
fs.deleteOnExit(new Path(dst));
fs.close();
}
/** HDFS */
private static void getDirectoryFromHdfs() throws FileNotFoundException,IOException {
String dst = "hdfs://192.168.0.113:9000/user/zhangzk";
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
FileStatus fileList[] = fs.listStatus(new Path(dst));
int size = fileList.length;
for(int i = 0; i < size; i++){
System.out.println("name:" + fileList[i].getPath().getName() + "/t/tsize:" + fileList[i].getLen());
}
fs.close();
}
}
주의: append 작업은hadoop-0.21 버전부터 지원되지 않습니다. Append에 대한 작업은 Javaeye의 문서를 참고할 수 있습니다.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
JPA + QueryDSL 계층형 댓글, 대댓글 구현(2)이번엔 전편에 이어서 계층형 댓글, 대댓글을 다시 리팩토링해볼 예정이다. 이전 게시글에서는 계층형 댓글, 대댓글을 구현은 되었지만 N+1 문제가 있었다. 이번에는 그 N+1 문제를 해결해 볼 것이다. 위의 로직은 이...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.