Watson Machine Learning 명령줄 인터페이스
6889 단어 Watson심층 학습Watson-Studio기계 학습
소개
Watson Machine Learning에 어느 시점에 명령줄이 만들어졌습니다.
UI에서는 Training Definition이라든지 지울 수 없기 때문에, 몇번이나 테스트해 쓰레기가 쌓여 오면 매우 편리합니다.
그 이용 메모를 남겨 둡니다.
(2019-07-08) 최신 명령으로 업데이트
(2019-09-03) 이해하기 어려운 부분에 화면 복사 추가
전제
IBM Cloud ibmcloud
명령을 사용할 수 있다고 가정합니다.
아직의 경우는 IBM Cloud CLI 로부터 도입해 주세요.
도입 절차
다음 명령으로 도입합니다.
$ ibmcloud plugin install machine-learning
설정
먼저 IBM Cloud 대시보드에서 Watson ML 관리 화면으로 들어가 자격 증명을 얻습니다.
그런 다음 자격 증명을 명령줄의 환경 변수로 설정합니다.
Windows의 경우
setenv.batset ML_ENV=https://us-south.ml.cloud.ibm.com
set ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Mac의 경우
setenv.shexport ML_ENV=https://us-south.ml.cloud.ibm.com
export ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
MAC의 경우 위의 배치 파일을 준비하고 다음 명령을 실행합니다.
$ source ./setenv.sh
GUID 획득/설정
GUID는 IBM Cloud 관리 화면의 Watson Machine Learning 행에서 맨 왼쪽 이름(여기서 링크됨) 이외의 부분을 클릭하면 표시됩니다.
아래 화면과 같이 GUID의 오른쪽에 있는 클립보트 아이콘을 클릭하면 클립보드에 복사됩니다.
얻은 GUID를 사용하여 지금처럼 설정합니다.
$ ibmcloud ml set instance xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
실행
지금까지 준비가 되면 나중에 명령을 실행하기만 하면 됩니다.
$ ibmcmoud ml help
이런 결과가 돌아올 것입니다.
名前:
ibmcloud ml - Manage machine learning lifecycle on IBM Cloud
使用法:
ibmcloud ml command [arguments...] [command options]
コマンド:
cancel Cancel training a model
delete Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs/libraries/runtimes
deploy Deploy a model for scoring
experiments Run/Update an experiment stored in WML Repository
generate-manifest Generate a sample manifest for training-definitions/experiments/training-runs/update-experiments/batch/libraries/runtimes
libraries Download content from(to the present working directory)/Update a library stored in WML Repository
list List the models/deployments/training-runs/experiments/training-definitions/experiment-runs/libraries/runtimes
models Download model from(both metadata and content of the model to the present working directory) WML repository
monitor Start fetching status/metric messages of a training-run/experiment
runtimes Download content from(to the present working directory)/Update a runtime stored in WML Repository
score Score the model. Sample scoring json format - {"modelId": "sample", "deploymentId": "sample","payload": {"fields": [],"values": []}}
set Set ML instance
show Get detailed information about models/deployments/training-runs/training-definitions/experiments/experiment-runs/libraries/runtimes
store Store a model/training-definition/experiment/training-runs/libraries/runtimes to WML repository
train Start training a model
version show git hash and build time of cli
help, h ヘルプを表示します
コマンドについて詳しくは、'ibmcloud ml help [command]' と入力してください。
명령 예
(Training 정의 중, 필요없는 것을 지우기 위한 순서)
$ ibmcloud ml list training-definitions
Fetching the list of training-definitions ...
SI No Name guid framework version created-at
1 Kidney-1 6c017f34-3cef-4aa1-b5c2-deae7783b9ac wml 1.1 2018-06-23T05:58:15.874Z
2 simgle-cnn-on-mnist-v1 d41adc03-85a9-466c-8115-5e9ca3df0e95 tensorflow 1.5 2018-06-23T06:41:13.116Z
3 simgle-cnn-on-mnist-v2 52a7ac4d-42ae-4d90-871c-5df178dec7e8 tensorflow 1.5 2018-06-23T08:04:18.637Z
4 simgle-cnn-on-mnist-v3 679db41a-cf94-45a7-99c3-6e4127f94fee tensorflow 1.5 2018-06-23T08:35:52.351Z
5 cnn from nnd v4 5a6488d0-096b-4d90-86e9-11597fa9708d tensorflow 1.5 2018-06-26T00:09:44.957Z
6 cnn from kaggle epoch=200 734e226a-1338-4319-8ebe-8e1008073ae6 tensorflow 1.5 2018-06-26T00:30:18.238Z
7 cnn from kaggle w adam d9d0cac3-297a-4285-b5d7-16c556c1fbc1 tensorflow 1.5 2018-06-26T01:26:57.072Z
8 aka zip 306dfd8e-ed09-4e71-afd1-c106badef5d4 tensorflow 1.5 2018-06-26T02:18:01.358Z
9 cnn-cifar10-kaggle ec9379f5-5b1b-4530-a2db-4e67e1e4541d tensorflow 1.5 2018-06-26T03:43:43.863Z
9 records found.
OK
List all training-definitions successful
$ ibmcloud ml delete training-definitions 306dfd8e-ed09-4e71-afd1-c106badef5d4
Deleting the training-definition '306dfd8e-ed09-4e71-afd1-c106badef5d4' ...
OK
Delete training-definition successful
덤 객체 사이의 관계 다이어그램
Experiments에서 사용하면 Watson Machine Learning 객체 간의 관계는 매우 이해하기 어렵습니다.
자신의 이해를 위해, 이런 그림을 만들어 보았습니다.
Reference
이 문제에 관하여(Watson Machine Learning 명령줄 인터페이스), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/makaishi2/items/78e3938ce4897933f9be
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
IBM Cloud
ibmcloud
명령을 사용할 수 있다고 가정합니다.아직의 경우는 IBM Cloud CLI 로부터 도입해 주세요.
도입 절차
다음 명령으로 도입합니다.
$ ibmcloud plugin install machine-learning
설정
먼저 IBM Cloud 대시보드에서 Watson ML 관리 화면으로 들어가 자격 증명을 얻습니다.
그런 다음 자격 증명을 명령줄의 환경 변수로 설정합니다.
Windows의 경우
setenv.batset ML_ENV=https://us-south.ml.cloud.ibm.com
set ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Mac의 경우
setenv.shexport ML_ENV=https://us-south.ml.cloud.ibm.com
export ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
MAC의 경우 위의 배치 파일을 준비하고 다음 명령을 실행합니다.
$ source ./setenv.sh
GUID 획득/설정
GUID는 IBM Cloud 관리 화면의 Watson Machine Learning 행에서 맨 왼쪽 이름(여기서 링크됨) 이외의 부분을 클릭하면 표시됩니다.
아래 화면과 같이 GUID의 오른쪽에 있는 클립보트 아이콘을 클릭하면 클립보드에 복사됩니다.
얻은 GUID를 사용하여 지금처럼 설정합니다.
$ ibmcloud ml set instance xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
실행
지금까지 준비가 되면 나중에 명령을 실행하기만 하면 됩니다.
$ ibmcmoud ml help
이런 결과가 돌아올 것입니다.
名前:
ibmcloud ml - Manage machine learning lifecycle on IBM Cloud
使用法:
ibmcloud ml command [arguments...] [command options]
コマンド:
cancel Cancel training a model
delete Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs/libraries/runtimes
deploy Deploy a model for scoring
experiments Run/Update an experiment stored in WML Repository
generate-manifest Generate a sample manifest for training-definitions/experiments/training-runs/update-experiments/batch/libraries/runtimes
libraries Download content from(to the present working directory)/Update a library stored in WML Repository
list List the models/deployments/training-runs/experiments/training-definitions/experiment-runs/libraries/runtimes
models Download model from(both metadata and content of the model to the present working directory) WML repository
monitor Start fetching status/metric messages of a training-run/experiment
runtimes Download content from(to the present working directory)/Update a runtime stored in WML Repository
score Score the model. Sample scoring json format - {"modelId": "sample", "deploymentId": "sample","payload": {"fields": [],"values": []}}
set Set ML instance
show Get detailed information about models/deployments/training-runs/training-definitions/experiments/experiment-runs/libraries/runtimes
store Store a model/training-definition/experiment/training-runs/libraries/runtimes to WML repository
train Start training a model
version show git hash and build time of cli
help, h ヘルプを表示します
コマンドについて詳しくは、'ibmcloud ml help [command]' と入力してください。
명령 예
(Training 정의 중, 필요없는 것을 지우기 위한 순서)
$ ibmcloud ml list training-definitions
Fetching the list of training-definitions ...
SI No Name guid framework version created-at
1 Kidney-1 6c017f34-3cef-4aa1-b5c2-deae7783b9ac wml 1.1 2018-06-23T05:58:15.874Z
2 simgle-cnn-on-mnist-v1 d41adc03-85a9-466c-8115-5e9ca3df0e95 tensorflow 1.5 2018-06-23T06:41:13.116Z
3 simgle-cnn-on-mnist-v2 52a7ac4d-42ae-4d90-871c-5df178dec7e8 tensorflow 1.5 2018-06-23T08:04:18.637Z
4 simgle-cnn-on-mnist-v3 679db41a-cf94-45a7-99c3-6e4127f94fee tensorflow 1.5 2018-06-23T08:35:52.351Z
5 cnn from nnd v4 5a6488d0-096b-4d90-86e9-11597fa9708d tensorflow 1.5 2018-06-26T00:09:44.957Z
6 cnn from kaggle epoch=200 734e226a-1338-4319-8ebe-8e1008073ae6 tensorflow 1.5 2018-06-26T00:30:18.238Z
7 cnn from kaggle w adam d9d0cac3-297a-4285-b5d7-16c556c1fbc1 tensorflow 1.5 2018-06-26T01:26:57.072Z
8 aka zip 306dfd8e-ed09-4e71-afd1-c106badef5d4 tensorflow 1.5 2018-06-26T02:18:01.358Z
9 cnn-cifar10-kaggle ec9379f5-5b1b-4530-a2db-4e67e1e4541d tensorflow 1.5 2018-06-26T03:43:43.863Z
9 records found.
OK
List all training-definitions successful
$ ibmcloud ml delete training-definitions 306dfd8e-ed09-4e71-afd1-c106badef5d4
Deleting the training-definition '306dfd8e-ed09-4e71-afd1-c106badef5d4' ...
OK
Delete training-definition successful
덤 객체 사이의 관계 다이어그램
Experiments에서 사용하면 Watson Machine Learning 객체 간의 관계는 매우 이해하기 어렵습니다.
자신의 이해를 위해, 이런 그림을 만들어 보았습니다.
Reference
이 문제에 관하여(Watson Machine Learning 명령줄 인터페이스), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/makaishi2/items/78e3938ce4897933f9be
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
$ ibmcloud plugin install machine-learning
먼저 IBM Cloud 대시보드에서 Watson ML 관리 화면으로 들어가 자격 증명을 얻습니다.
그런 다음 자격 증명을 명령줄의 환경 변수로 설정합니다.
Windows의 경우
setenv.bat
set ML_ENV=https://us-south.ml.cloud.ibm.com
set ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
set ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Mac의 경우
setenv.sh
export ML_ENV=https://us-south.ml.cloud.ibm.com
export ML_USERNAME=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_PASSWORD=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
export ML_INSTANCE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
MAC의 경우 위의 배치 파일을 준비하고 다음 명령을 실행합니다.
$ source ./setenv.sh
GUID 획득/설정
GUID는 IBM Cloud 관리 화면의 Watson Machine Learning 행에서 맨 왼쪽 이름(여기서 링크됨) 이외의 부분을 클릭하면 표시됩니다.
아래 화면과 같이 GUID의 오른쪽에 있는 클립보트 아이콘을 클릭하면 클립보드에 복사됩니다.
얻은 GUID를 사용하여 지금처럼 설정합니다.
$ ibmcloud ml set instance xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
실행
지금까지 준비가 되면 나중에 명령을 실행하기만 하면 됩니다.
$ ibmcmoud ml help
이런 결과가 돌아올 것입니다.
名前:
ibmcloud ml - Manage machine learning lifecycle on IBM Cloud
使用法:
ibmcloud ml command [arguments...] [command options]
コマンド:
cancel Cancel training a model
delete Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs/libraries/runtimes
deploy Deploy a model for scoring
experiments Run/Update an experiment stored in WML Repository
generate-manifest Generate a sample manifest for training-definitions/experiments/training-runs/update-experiments/batch/libraries/runtimes
libraries Download content from(to the present working directory)/Update a library stored in WML Repository
list List the models/deployments/training-runs/experiments/training-definitions/experiment-runs/libraries/runtimes
models Download model from(both metadata and content of the model to the present working directory) WML repository
monitor Start fetching status/metric messages of a training-run/experiment
runtimes Download content from(to the present working directory)/Update a runtime stored in WML Repository
score Score the model. Sample scoring json format - {"modelId": "sample", "deploymentId": "sample","payload": {"fields": [],"values": []}}
set Set ML instance
show Get detailed information about models/deployments/training-runs/training-definitions/experiments/experiment-runs/libraries/runtimes
store Store a model/training-definition/experiment/training-runs/libraries/runtimes to WML repository
train Start training a model
version show git hash and build time of cli
help, h ヘルプを表示します
コマンドについて詳しくは、'ibmcloud ml help [command]' と入力してください。
명령 예
(Training 정의 중, 필요없는 것을 지우기 위한 순서)
$ ibmcloud ml list training-definitions
Fetching the list of training-definitions ...
SI No Name guid framework version created-at
1 Kidney-1 6c017f34-3cef-4aa1-b5c2-deae7783b9ac wml 1.1 2018-06-23T05:58:15.874Z
2 simgle-cnn-on-mnist-v1 d41adc03-85a9-466c-8115-5e9ca3df0e95 tensorflow 1.5 2018-06-23T06:41:13.116Z
3 simgle-cnn-on-mnist-v2 52a7ac4d-42ae-4d90-871c-5df178dec7e8 tensorflow 1.5 2018-06-23T08:04:18.637Z
4 simgle-cnn-on-mnist-v3 679db41a-cf94-45a7-99c3-6e4127f94fee tensorflow 1.5 2018-06-23T08:35:52.351Z
5 cnn from nnd v4 5a6488d0-096b-4d90-86e9-11597fa9708d tensorflow 1.5 2018-06-26T00:09:44.957Z
6 cnn from kaggle epoch=200 734e226a-1338-4319-8ebe-8e1008073ae6 tensorflow 1.5 2018-06-26T00:30:18.238Z
7 cnn from kaggle w adam d9d0cac3-297a-4285-b5d7-16c556c1fbc1 tensorflow 1.5 2018-06-26T01:26:57.072Z
8 aka zip 306dfd8e-ed09-4e71-afd1-c106badef5d4 tensorflow 1.5 2018-06-26T02:18:01.358Z
9 cnn-cifar10-kaggle ec9379f5-5b1b-4530-a2db-4e67e1e4541d tensorflow 1.5 2018-06-26T03:43:43.863Z
9 records found.
OK
List all training-definitions successful
$ ibmcloud ml delete training-definitions 306dfd8e-ed09-4e71-afd1-c106badef5d4
Deleting the training-definition '306dfd8e-ed09-4e71-afd1-c106badef5d4' ...
OK
Delete training-definition successful
덤 객체 사이의 관계 다이어그램
Experiments에서 사용하면 Watson Machine Learning 객체 간의 관계는 매우 이해하기 어렵습니다.
자신의 이해를 위해, 이런 그림을 만들어 보았습니다.
Reference
이 문제에 관하여(Watson Machine Learning 명령줄 인터페이스), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/makaishi2/items/78e3938ce4897933f9be
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
$ ibmcloud ml set instance xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
지금까지 준비가 되면 나중에 명령을 실행하기만 하면 됩니다.
$ ibmcmoud ml help
이런 결과가 돌아올 것입니다.
名前:
ibmcloud ml - Manage machine learning lifecycle on IBM Cloud
使用法:
ibmcloud ml command [arguments...] [command options]
コマンド:
cancel Cancel training a model
delete Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs/libraries/runtimes
deploy Deploy a model for scoring
experiments Run/Update an experiment stored in WML Repository
generate-manifest Generate a sample manifest for training-definitions/experiments/training-runs/update-experiments/batch/libraries/runtimes
libraries Download content from(to the present working directory)/Update a library stored in WML Repository
list List the models/deployments/training-runs/experiments/training-definitions/experiment-runs/libraries/runtimes
models Download model from(both metadata and content of the model to the present working directory) WML repository
monitor Start fetching status/metric messages of a training-run/experiment
runtimes Download content from(to the present working directory)/Update a runtime stored in WML Repository
score Score the model. Sample scoring json format - {"modelId": "sample", "deploymentId": "sample","payload": {"fields": [],"values": []}}
set Set ML instance
show Get detailed information about models/deployments/training-runs/training-definitions/experiments/experiment-runs/libraries/runtimes
store Store a model/training-definition/experiment/training-runs/libraries/runtimes to WML repository
train Start training a model
version show git hash and build time of cli
help, h ヘルプを表示します
コマンドについて詳しくは、'ibmcloud ml help [command]' と入力してください。
명령 예
(Training 정의 중, 필요없는 것을 지우기 위한 순서)
$ ibmcloud ml list training-definitions
Fetching the list of training-definitions ...
SI No Name guid framework version created-at
1 Kidney-1 6c017f34-3cef-4aa1-b5c2-deae7783b9ac wml 1.1 2018-06-23T05:58:15.874Z
2 simgle-cnn-on-mnist-v1 d41adc03-85a9-466c-8115-5e9ca3df0e95 tensorflow 1.5 2018-06-23T06:41:13.116Z
3 simgle-cnn-on-mnist-v2 52a7ac4d-42ae-4d90-871c-5df178dec7e8 tensorflow 1.5 2018-06-23T08:04:18.637Z
4 simgle-cnn-on-mnist-v3 679db41a-cf94-45a7-99c3-6e4127f94fee tensorflow 1.5 2018-06-23T08:35:52.351Z
5 cnn from nnd v4 5a6488d0-096b-4d90-86e9-11597fa9708d tensorflow 1.5 2018-06-26T00:09:44.957Z
6 cnn from kaggle epoch=200 734e226a-1338-4319-8ebe-8e1008073ae6 tensorflow 1.5 2018-06-26T00:30:18.238Z
7 cnn from kaggle w adam d9d0cac3-297a-4285-b5d7-16c556c1fbc1 tensorflow 1.5 2018-06-26T01:26:57.072Z
8 aka zip 306dfd8e-ed09-4e71-afd1-c106badef5d4 tensorflow 1.5 2018-06-26T02:18:01.358Z
9 cnn-cifar10-kaggle ec9379f5-5b1b-4530-a2db-4e67e1e4541d tensorflow 1.5 2018-06-26T03:43:43.863Z
9 records found.
OK
List all training-definitions successful
$ ibmcloud ml delete training-definitions 306dfd8e-ed09-4e71-afd1-c106badef5d4
Deleting the training-definition '306dfd8e-ed09-4e71-afd1-c106badef5d4' ...
OK
Delete training-definition successful
덤 객체 사이의 관계 다이어그램
Experiments에서 사용하면 Watson Machine Learning 객체 간의 관계는 매우 이해하기 어렵습니다.
자신의 이해를 위해, 이런 그림을 만들어 보았습니다.
Reference
이 문제에 관하여(Watson Machine Learning 명령줄 인터페이스), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/makaishi2/items/78e3938ce4897933f9be
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
$ ibmcloud ml list training-definitions
Fetching the list of training-definitions ...
SI No Name guid framework version created-at
1 Kidney-1 6c017f34-3cef-4aa1-b5c2-deae7783b9ac wml 1.1 2018-06-23T05:58:15.874Z
2 simgle-cnn-on-mnist-v1 d41adc03-85a9-466c-8115-5e9ca3df0e95 tensorflow 1.5 2018-06-23T06:41:13.116Z
3 simgle-cnn-on-mnist-v2 52a7ac4d-42ae-4d90-871c-5df178dec7e8 tensorflow 1.5 2018-06-23T08:04:18.637Z
4 simgle-cnn-on-mnist-v3 679db41a-cf94-45a7-99c3-6e4127f94fee tensorflow 1.5 2018-06-23T08:35:52.351Z
5 cnn from nnd v4 5a6488d0-096b-4d90-86e9-11597fa9708d tensorflow 1.5 2018-06-26T00:09:44.957Z
6 cnn from kaggle epoch=200 734e226a-1338-4319-8ebe-8e1008073ae6 tensorflow 1.5 2018-06-26T00:30:18.238Z
7 cnn from kaggle w adam d9d0cac3-297a-4285-b5d7-16c556c1fbc1 tensorflow 1.5 2018-06-26T01:26:57.072Z
8 aka zip 306dfd8e-ed09-4e71-afd1-c106badef5d4 tensorflow 1.5 2018-06-26T02:18:01.358Z
9 cnn-cifar10-kaggle ec9379f5-5b1b-4530-a2db-4e67e1e4541d tensorflow 1.5 2018-06-26T03:43:43.863Z
9 records found.
OK
List all training-definitions successful
$ ibmcloud ml delete training-definitions 306dfd8e-ed09-4e71-afd1-c106badef5d4
Deleting the training-definition '306dfd8e-ed09-4e71-afd1-c106badef5d4' ...
OK
Delete training-definition successful
Experiments에서 사용하면 Watson Machine Learning 객체 간의 관계는 매우 이해하기 어렵습니다.
자신의 이해를 위해, 이런 그림을 만들어 보았습니다.
Reference
이 문제에 관하여(Watson Machine Learning 명령줄 인터페이스), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/makaishi2/items/78e3938ce4897933f9be텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)