SparkSQL 과 SparkCore 가 지 표를 냅 니 다.

scala:2.10.6
pom.xml
xml version="1.0" encoding="UTF-8"?>
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0

job2
JobNew
1.0-SNAPSHOT









log4j
log4j
1.2.17


mysql
mysql-connector-java
5.1.31





org.apache.spark
spark-graphx_2.10
1.6.0





com.typesafe
config
1.3.1



redis.clients
jedis
2.9.0



org.apache.hbase
hbase
1.1.1



org.apache.hbase
hbase-common
1.1.1



org.apache.hbase
hbase-server
1.1.1



org.apache.hbase
hbase-client
1.1.1



com.google.code.gson
gson
2.8.4




ch.hsr
geohash
1.3.0



org.scalikejdbc
scalikejdbc-core_2.10
2.5.0



org.scalikejdbc
scalikejdbc-config_2.10
2.5.0



org.apache.spark
spark-sql_2.10
1.6.0


com.alibaba
fastjson
1.2.36



src/main/scala



net.alchim31.maven
scala-maven-plugin
3.1.3



compile
testCompile



-make:transitive
-dependencyfile
${project.build.directory}/.scala_dependencies






org.apache.maven.plugins
maven-surefire-plugin
2.13

false
true


**/*Test.*
**/*Suite.*



SparkSQL 방식
package com.devicetype

import java.util.Properties

import com.typesafe.config.ConfigFactory
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{SQLContext, SaveMode}

object Devicetype {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]").set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(conf)
val sQLContext = new SQLContext(sc)

val file = sQLContext.read.parquet("D:\\Job1\\parquet5\\part-r-00000-dcccc879-86a0-47d5-91e1-83636cd561d0.gz.parquet")
sQLContext.setConf("spark.sql.parquet.compression.codec","snappy")

file.registerTempTable("devicetype")
//devicetype
val df = sQLContext.sql(
"""
|select case when devicetype = 1 then " " when devicetype = 2 then " " else " " end devicetype,
|sum(case when requestmode = 1 and processnode >=1 then 1 else 0 end) ysrequest,
|sum(case when requestmode = 1 and processnode >=2 then 1 else 0 end) yxrequest,
|sum(case when requestmode = 1 and processnode =3 then 1 else 0 end) adrequest,
|sum(case when iseffective = 1 and isbilling =1 and isbid = 1 then 1 else 0 end) cybid,
|sum(case when iseffective = 1 and isbilling =1 and iswin = 1 and adorderid != 0 then 1 else 0 end) cybidsuccees,
|sum(case when requestmode = 2 and iseffective =1 then 1 else 0 end) shows,
|sum(case when requestmode = 3 and iseffective =1 then 1 else 0 end) clicks,
|sum(case when iseffective = 1 and isbilling =1 and iswin = 1 then winprice/1000 else 0 end) dspcost,
|sum(case when iseffective = 1 and isbilling =1 and iswin = 1 then adpayment/1000 else 0 end) dsppay
|from devicetype group by devicetype
""".stripMargin)

val load = ConfigFactory.load()
val properties = new Properties()
properties.setProperty("user",load.getString("jdbc.user"))
properties.setProperty("password",load.getString("jdbc.password"))
//
df.write.mode(SaveMode.Append).jdbc(load.getString("jdbc.url"),"devicetype1",properties)
}
}






/*************************************************/
SparkCore
package com.driver

import com.utils.RptUtils
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, SQLContext}

object DriverData_SparkCore {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[*]").set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(conf)
val sQLContext = new SQLContext(sc)
//
sQLContext.setConf("spark.sql.parquet.compression.codec","snappy")
val file: DataFrame = sQLContext.read.parquet("D:\\Job1\\parquet5\\part-r-00000-dcccc879-86a0-47d5-91e1-83636cd561d0.gz.parquet")

file.map(row=>{
// , ,
val requestmode = row.getAs[Int]("requestmode")
val processnode = row.getAs[Int]("processnode")
// , ,
val iseffective = row.getAs[Int]("iseffective")
val isbilling = row.getAs[Int]("isbilling")
val isbid = row.getAs[Int]("isbid")
val iswin = row.getAs[Int]("iswin")
val adorderid = row.getAs[Int]("adorderid")
val winprice = row.getAs[Double]("winprice")
val ad = row.getAs[Double]("adpayment")
// , , ,
val reqlist = RptUtils.req(requestmode,processnode)
// , ,
val adlist = RptUtils.addap(iseffective,isbilling,isbid,iswin,adorderid,winprice,ad)
//
val adCountlist = RptUtils.Counts(requestmode,iseffective)
//
(row.getAs[String]("ispname"),
reqlist ++ adlist ++ adCountlist
)
}).reduceByKey((list1,list2)=>{
// list1(0,1,1,0) list2(1,1,1,1) zip((0,1),(1,1),(1,1),(0,1))
list1.zip(list2).map(t=>t._1+t._2)
})//
.map(t=>t._1+" , "+t._2.mkString(","))
// hdfs
.saveAsTextFile("D:\\Job1\\SparkCore")
}
}
 
   
package com.utils

object RptUtils {
def req(reqMode:Int,proMode:Int):List[Double]={
if(reqMode == 1 && proMode ==1){
//
//
//
List[Double](1,0,0)
}else if(reqMode == 1 && proMode ==2){
List[Double](1,1,0)
}else if(reqMode == 1 && proMode ==3){
List[Double](1,1,1)
}else{
List[Double](0,0,0)
}
}
def addap(iseffective:Int,isbilling:Int,
isbid:Int,iswin:Int,adorderid:Int,winprice:Double,ad:Double):List[Double]={
if(iseffective==1 && isbilling==1 && isbid ==1){
if(iseffective==1 && isbilling==1 && iswin ==1 && adorderid !=0){
List[Double](1,1,winprice/1000.0,ad/1000.0)
}else{
List[Double](1,0,0,0)
}
}else{
List[Double](0,0,0,0)
}
}
def Counts(requestmode:Int,iseffective:Int): List[Double] ={
if(requestmode ==2 && iseffective ==1){
List[Double](1,0)
}else if(requestmode ==3 && iseffective ==1){
List[Double](0,1)
}else{
List[Double](0,0)
}
}
}

다음으로 전송:https://www.cnblogs.com/VIP8/p/10520002.html

좋은 웹페이지 즐겨찾기