[머 신 러 닝] 머 신 러 닝 노트 정리 11 - 신경 망 알고리즘 단순 구현
[머 신 러 닝] 머 신 러 닝 노트 정리 10 - 신경 망 알고리즘
1. 비 선형 전환 방정식 (non - linear transformation function)
sigmoid 함수 (S 곡선) 는 activation function 으로 사 용 됩 니 다.
1.1 (tanh)
1.2 (logistic function)
2. 간단 한 신경 망 알고리즘 실현
#!/usr/bin/python # -*- coding:utf-8 -*- # 8x8 :0,1,2,3,4,5,6,7,8,9 import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer from NeuralNetwork import NeuralNetwork from sklearn.cross_validation import train_test_split digits = load_digits() X = digits.data y = digits.target X -= X.min() # normalize the values to bring them into the range 0-1 X /= X.max() nn = NeuralNetwork([64, 100, 10], 'logistic') X_train, X_test, y_train, y_test = train_test_split(X, y) labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) print "start fitting" nn.fit(X_train, labels_train, epochs=3000) predictions = [] for i in range(X_test.shape[0]): o = nn.predict(X_test[i]) predictions.append(np.argmax(o)) print confusion_matrix(y_test, predictions) print classification_report(y_test, predictions)
실행 결과
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
【Codility Lesson3】FrogJmpA small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.