STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (9) I2C를 사용해 보자 2 si7020편
14804 단어 STM32I2CsensorSTM32CubeIDEnucleo
htps : // 코 m / 우사시로 / ms / 0 아 67b6c b541cf1c 베 4f
이번에는 Si7020 온습도 센서의 정보를 살펴 보겠습니다.
우선 설정을 합시다.
새 프로젝트를 시작하여 I2C를 설정합니다.
I2C1을 I2C로 설정합니다.
PB8, PB9에는 I2C SCL과 SDA가 할당됩니다.
자, CodeGenerate하자.
그런 다음 main.c에 프로그램을 추가합니다.
63행
/* USER CODE BEGIN 0 */
/* Direct printf to output somewhere */
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
#ifndef __UUID_H
#define __UUID_H
//#define STM32_UUID ((uint32_t *)0x1FF0F420)
#define STM32_UUID ((uint32_t *)UID_BASE)
#endif //__UUID_H
/* USER CODE END 0 */
268행
/* USER CODE BEGIN 4 */
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART2 and Loop until the end of transmission */
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END 4 */
111행
printf("UART TEST\r\n");
기동하면, TeraTerm등에서 이하 출력이 표시된다고 생각합니다.
이제 I2C 코드를 작성해 보겠습니다.
먼저 Si7020의 I2C 주소 0x40에 0xF5를 보내 습도를 얻습니다.
덧붙여 I2C 어드레스의 0x40은 7bit 표기가 되어, 1비트 시프트해 8bit 표기로 합니다.
static const u_int8_t si7020_ADDR = 0x40<<1;
이렇게 하지 않으면 STM32CubeIDE에서는 움직이지 않습니다.
(이것을 이해하는 데 엄청난 시간이 걸렸습니다 ...)
HAL_I2C_Master_Transmit(hi2c, DevAddress, pData, Size, Timeout)
DevAddress는 이전 0x40 << 1 인 si7020_ADDR
pData에는 0xF5를 Size는 1바이트이므로 1로 합니다.
(Measure Relative Humidity, No Hold Master Mode 0xF5)
static const u_int8_t REG_HUM = 0xF5 ;
reg[0] = REG_HUM;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
됩니다.
그런 다음 데이터를 받습니다.
HAL_I2C_Master_Receive(hi2c, DevAddress, pData, Size, Timeout)
pData에는 tmp라고합시다.
여기서 받는 크기는 2바이트입니다.
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
그런 다음 받은 tmp를 습도로 변환합니다.
변환식은 다음과 같습니다.
2바이트이므로 1바이트씩으로 하여 계산합니다.
humidity = (((tmp[0] * 256 + tmp[1]) * 125.0)/65536.0) - 6)
이대로는 출력할 수 없으므로 sprintf의 hum 안에 넣어 줍니다.
게다가, 10배 하고, 한층 더 10분의 1로 하는 것으로 소수점 이하를 나눌 수 없는 것을 너무로, 출력할 수 있습니다.
이것으로 소수점 이하 1 자리수를 표시하는 것이 가능하게 됩니다.
(2자리로 하면, xx.0x일 때의 0이 표시되지 않습니다・・・)
이하, 프로그램을 넣어 갑니다.
26행에 다음을 넣어
#include <stdio.h>
50행째에는 다음을 넣습니다.
/* USER CODE BEGIN PV */
static const u_int8_t si7020_ADDR = 0x40<< 1;
static const u_int8_t REG_HUM = 0xF5 ;
uint8_t reg[12];
char tmp[2];
float humidity;
uint8_t hum[12];
/* USER CODE END PV */
125행부터 다음을 입력합니다.
reg[0] = REG_HUM;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
HAL_Delay(500);
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
humidity = ((((tmp[0] * 256 + tmp[1]) * 125.0) / 65536.0) - 6)*10;
sprintf((char*)hum,"%u.%u RH\r\n",
((unsigned int)humidity / 10),
((unsigned int)humidity % 10));
printf(hum);
HAL_Delay(500);
그러면 다음과 같은 출력을 얻을 수 있다고 생각합니다.
다음은 온도를 표시합시다.
온도를 알기 위해서는
HAL_I2C_Master_Transmit(hi2c, DevAddress, pData, Size, Timeout)
에서 F3을 보내야합니다.
(Measure Temperature, No Hold Master Mode 0xF3)
static const u_int8_t REG_TEMP = 0xF3 ;
프로그램은 습도와 거의 동일합니다.
풀 프로그램입니다.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
//#include <string.h>
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
static const u_int8_t si7020_ADDR = 0x40<< 1;
static const u_int8_t REG_HUM = 0xF5 ;
static const u_int8_t REG_TEMP = 0xF3 ;
uint8_t reg[12];
char tmp[2];
float humidity;
uint8_t hum[12];
float temp;
uint8_t utemp[12];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* Direct printf to output somewhere */
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
#ifndef __UUID_H
#define __UUID_H
//#define STM32_UUID ((uint32_t *)0x1FF0F420)
#define STM32_UUID ((uint32_t *)UID_BASE)
#endif //__UUID_H
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
printf("I2C TEST\r\n");
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
reg[0] = REG_HUM;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
HAL_Delay(500);
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
humidity = ((((tmp[0] * 256 + tmp[1]) * 125.0) / 65536.0) - 6)*10;
sprintf((char*)hum,"%u.%u RH\r\n",
((unsigned int)humidity / 10),
((unsigned int)humidity % 10));
printf(hum);
HAL_Delay(500);
reg[0] = REG_TEMP;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
HAL_Delay(500);
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
temp = ((((tmp[0] * 256 + tmp[1]) * 175.72) / 65536.0) - 46.85)*10;
sprintf((char*)utemp,"%u.%u C\r\n",
((unsigned int)temp / 10),
((unsigned int)temp % 10));
printf(utemp);
HAL_Delay(500);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART2 and Loop until the end of transmission */
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
이런 출력이 나오면 완성입니다.
Reference
이 문제에 관하여(STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (9) I2C를 사용해 보자 2 si7020편), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/usashirou/items/f59b4b82d7d4086b8936텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)