STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (11) I2C를 사용해 보자 4 Si7020+ssd1306편
12894 단어 STM32I2CSTM32CubeIDEolednucleo
htps : // 코 m / 우사시로 / ms / 에 1에 7265 에 38f011c89947
Nucleo 보드와 Si7020, SSD1306을 연결합니다.
이번에는 브레드 보드도 준비하십시오.
점퍼 와이어는 수컷 ⇔ 수컷 10개를 준비합니다. (8개라도 OK)
새로운 프로젝트를 시작하거나 Si7020 프로젝트를 사용하십시오.
먼저 STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (9) I2C를 사용해 보자 2 si7020편의 내용을 실시합니다.
htps : // 이 m/우사시로/있어 ms/f59b4b82d7d4086b8936
그런 다음 ssd1306
- font.h
- font.c
- ssd1306.h
- ssd1306.c
을 복사합니다.
STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (10) I2C를 사용해 보자 3 ssd1306편을 봐
htps : // 코 m / 우사시로 / ms / 에 1에 7265 에 38f011c89947
다음에, 화면에 표시하는 내용을 만들어 갑니다.
59행 당
uint8_t ohum[12];
uint8_t otemp[12];
를 추가합니다.
165행에
// ssd1306_Fill(White);
// ssd1306_UpdateScreen();
sprintf((char*)ohum,"%u.%u RH",
((unsigned int)humidity / 10),
((unsigned int)humidity % 10));
sprintf((char*)otemp,"%u.%u C",
((unsigned int)temp / 10),
((unsigned int)temp % 10));
ssd1306_SetCursor(23,20);
ssd1306_WriteString(ohum,Font_11x18,Black);
ssd1306_SetCursor(23,40);
ssd1306_WriteString(otemp,Font_11x18,Black);
ssd1306_UpdateScreen();
를 추가합니다.
첫 번째 ssd1306_Fill(White);
는 처음에 비친 문자를 지우는 프로그램입니다.
이번, I2C Sensor의 문자 위치를 변경했기 때문에 삭제하지 않게 하고 있습니다.
그런 다음 hum와 temp을 씁니다.
다만, 개행 코드가, 문자화하기 때문에 개행 코드가 없는 프로그램을 기술하고 있습니다.
이를 위해 ohum, otemp의 두 가지를 추가했습니다.
다음은 전체 프로그램
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
//#include <string.h>
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#include "ssd1306.h"
#include "fonts.h"
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
static const u_int8_t si7020_ADDR = 0x40<< 1;
static const u_int8_t REG_HUM = 0xF5 ;
static const u_int8_t REG_TEMP = 0xF3 ;
uint8_t reg[12];
char tmp[2];
float humidity;
uint8_t hum[12];
uint8_t ohum[12];
uint8_t otemp[12];
float temp;
uint8_t utemp[12];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* Direct printf to output somewhere */
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
#ifndef __UUID_H
#define __UUID_H
//#define STM32_UUID ((uint32_t *)0x1FF0F420)
#define STM32_UUID ((uint32_t *)UID_BASE)
#endif //__UUID_H
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
printf("I2C Sensor\r\n");
ssd1306_Init();
HAL_Delay(1000);
ssd1306_Fill(White);
ssd1306_UpdateScreen();
HAL_Delay(1000);
ssd1306_SetCursor(10,0);
ssd1306_WriteString("I2C Sensor",Font_11x18,Black);
ssd1306_UpdateScreen();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
reg[0] = REG_HUM;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
HAL_Delay(500);
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
humidity = ((((tmp[0] * 256 + tmp[1]) * 125.0) / 65536.0) - 6)*10;
sprintf((char*)hum,"%u.%u RH\r\n",
((unsigned int)humidity / 10),
((unsigned int)humidity % 10));
printf(hum);
HAL_Delay(500);
reg[0] = REG_TEMP;
HAL_I2C_Master_Transmit(&hi2c1, si7020_ADDR,reg,1, 1000);
HAL_Delay(500);
HAL_I2C_Master_Receive(&hi2c1, si7020_ADDR,tmp,2,1000 );
temp = ((((tmp[0] * 256 + tmp[1]) * 175.72) / 65536.0) - 46.85)*10;
sprintf((char*)utemp,"%u.%u C\r\n",
((unsigned int)temp / 10),
((unsigned int)temp % 10));
printf(utemp);
HAL_Delay(500);
// ssd1306_Fill(White);
// ssd1306_UpdateScreen();
sprintf((char*)ohum,"%u.%u RH",
((unsigned int)humidity / 10),
((unsigned int)humidity % 10));
sprintf((char*)otemp,"%u.%u C",
((unsigned int)temp / 10),
((unsigned int)temp % 10));
ssd1306_SetCursor(23,20);
ssd1306_WriteString(ohum,Font_11x18,Black);
ssd1306_SetCursor(23,40);
ssd1306_WriteString(otemp,Font_11x18,Black);
ssd1306_UpdateScreen();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART2 and Loop until the end of transmission */
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
직렬 출력과 OLED에 동일한 데이터가 출력됩니다.
Reference
이 문제에 관하여(STM32CubeIDE를 사용해 보자 How To STM32CubeIDE 일본어판 (11) I2C를 사용해 보자 4 Si7020+ssd1306편), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/usashirou/items/a7c3cc17b700a0c05e78텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)