hdu 1397 Goldbach's Conjecture

2652 단어 소수Prime
제목 주소:
http://acm.hdu.edu.cn/showproblem.php?pid=1397
제목 설명:
Goldbach's Conjecture
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4797    Accepted Submission(s): 1815
Problem Description
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that n = p1 + p2. 
This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.
A sequence of even numbers is given as input. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2) and (p2, p1) separately as two different pairs.
 
Input
An integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 2^15. The end of the input is indicated by a number 0.
 
Output
Each output line should contain an integer number. No other characters should appear in the output.
 
Sample Input

   
   
   
   
6 10 12 0

 
Sample Output

   
   
   
   
1 2 1

제목:
고 드 바 흐 는 짝수 하 나 를 출력 하 는 데 모두 몇 개의 소수 가 고 드 바 흐 를 구성 하 는 지 추측 했다.
문제 풀이:
소수 타 표 생 성 후 시 뮬 레이 션 스 캔.
코드:
#include<stdio.h>
#include<string.h>
#define MM 32769
bool is_prime[MM] = {false};
int n=0;
int init_prime()
{
    memset(is_prime,true,sizeof(is_prime));
    for(int i=1;i<=MM-1;i++) if(i%2==0) is_prime[i]=false;
    for(int i=3;i<=MM/2+1;i++) for(int j=i+i;j<=MM-1;j+=i) if(j<=MM-1) is_prime[j]=false;
    is_prime[1]=false;
    is_prime[2]=true;
    return(0);
}
int main()
{
    init_prime();
    while(scanf("%d",&n)!=EOF&&n>0)
    {
        int cnt=0;
        for(int i=2;i<=n/2;i++)
        {
            if(is_prime[i]&&is_prime[n-i]) cnt++;
        }
        printf("%d
",cnt); } return(0); }

좋은 웹페이지 즐겨찾기