pytorch에서 nn.Dropout 사용 설명

2231 단어 pytorchnn.Dropout

코드 보세요~


Class USeDropout(nn.Module):
 
    def __init__(self): 
        super(DropoutFC, self).__init__() 
        self.fc = nn.Linear(100,20) 
        self.dropout = nn.Dropout(p=0.5)  
    def forward(self, input): 
        out = self.fc(input) 
        out = self.dropout(out) 
        return out 
Net = USeDropout() 
Net.train()
예시 코드는 위와 같이 nn을 직접 호출합니다.Dropout하면 되지만 호출할 때 모델 매개 변수를 전송해야 합니다.
추가: Pytorch의 nn.Dropout 실행 안정성 테스트

결론:


Pytorch의 nn.Dropout은 호출될 때마다dropout에서 떨어지는 매개 변수가 다르다. 같은 forward라도 다르다.
모델에서 여러 번 사용하는dropout의dropoutrate 크기가 같으면 같은dropout층을 사용하면 됩니다.

코드와 같이


import torch
import torch.nn as nn
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.dropout_1 = nn.Dropout(0.5)
        self.dropout_2 = nn.Dropout(0.5)
    def forward(self, input):
        # print(input)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_2 = self.dropout_2(input)
        print(drop_2)
if __name__ == '__main__':
    i = torch.rand((5, 5))
    m = MyModel()
    m.forward(i)
결과는 다음과 같습니다.
*\python.exe */model.py
tensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],
[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],
[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],
[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],
[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],
[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],
[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],
[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],
[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],
[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],
[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])
Process finished with exit code 0
이상의 개인적인 경험으로 여러분께 참고가 되었으면 좋겠습니다. 또한 많은 응원 부탁드립니다.

좋은 웹페이지 즐겨찾기