pytorch 네트워크 모델 구축 4 가지 방법
네트워크 모델 을 구축 하 는 것 은 다음 과 같다 고 가정 합 니 다.
권 적 층-'렐 루 층-'지 화 층-'전 접속 층-'렐 루 층-'전 접속 층
우선 몇 가지 방법 에 사용 할 가방 을 가 져 옵 니 다.
import torch
import torch.nn.functional as F
from collections import OrderedDict
첫 번 째 방법
# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv(x)), 2)
x = x.view(x.size(0), -1)
x = F.relu(self.dense1(x))
x = self.dense2(x)
return x
print("Method 1:")
model1 = Net1()
print(model1)
이런 방법 은 비교적 자주 사용 되 는데,초기의 교과 과정 은 보통 이런 방법 을 사용 했다.두 번 째 방법
# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential(
torch.nn.Linear(32 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 2:")
model2 = Net2()
print(model2)
이 방법 은 torch.nn.Sequential()용 기 를 이용 하여 빠 른 구축 을 하고 모델 의 각 층 은 순서대로 용기 에 추 가 됩 니 다.단점 은 각 층 의 번 호 는 기본 적 인 아라비아 숫자 로 구분 하기 어렵다.
세 번 째 방법:
# Method 3 -------------------------------
class Net3(torch.nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv=torch.nn.Sequential()
self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv.add_module("relu1",torch.nn.ReLU())
self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential()
self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense.add_module("relu2",torch.nn.ReLU())
self.dense.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 3:")
model3 = Net3()
print(model3)
이 방법 은 두 번 째 방법 에 대한 개선 입 니 다:add 를 통 해module()는 각 층 을 추가 하고 각 층 에 하나의 단독 이름 을 추가 합 니 다.
네 번 째 방법:
# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
def __init__(self):
super(Net4, self).__init__()
self.conv = torch.nn.Sequential(
OrderedDict(
[
("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", torch.nn.ReLU()),
("pool", torch.nn.MaxPool2d(2))
]
))
self.dense = torch.nn.Sequential(
OrderedDict([
("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
("relu2", torch.nn.ReLU()),
("dense2", torch.nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 4:")
model4 = Net4()
print(model4)
세 번 째 방법의 또 다른 쓰기 입 니 다.사전 형식 으로 각 층 을 추가 하고 단독 층 이름 을 설정 합 니 다.
전체 코드:
import torch
import torch.nn.functional as F
from collections import OrderedDict
# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv(x)), 2)
x = x.view(x.size(0), -1)
x = F.relu(self.dense1(x))
x = self.dense2()
return x
print("Method 1:")
model1 = Net1()
print(model1)
# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential(
torch.nn.Linear(32 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 2:")
model2 = Net2()
print(model2)
# Method 3 -------------------------------
class Net3(torch.nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv=torch.nn.Sequential()
self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv.add_module("relu1",torch.nn.ReLU())
self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential()
self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense.add_module("relu2",torch.nn.ReLU())
self.dense.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 3:")
model3 = Net3()
print(model3)
# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
def __init__(self):
super(Net4, self).__init__()
self.conv = torch.nn.Sequential(
OrderedDict(
[
("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", torch.nn.ReLU()),
("pool", torch.nn.MaxPool2d(2))
]
))
self.dense = torch.nn.Sequential(
OrderedDict([
("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
("relu2", torch.nn.ReLU()),
("dense2", torch.nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 4:")
model4 = Net4()
print(model4)
이상 이 바로 본 고의 모든 내용 입 니 다.여러분 의 학습 에 도움 이 되 고 저 희 를 많이 응원 해 주 셨 으 면 좋 겠 습 니 다.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
정확도에서 스케일링의 영향데이터셋 스케일링은 데이터 전처리의 주요 단계 중 하나이며, 데이터 변수의 범위를 줄이기 위해 수행됩니다. 이미지와 관련하여 가능한 최소-최대 값 범위는 항상 0-255이며, 이는 255가 최대값임을 의미합니다. 따...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.