python 최적화 알고리즘 성능 평가 테스트 함수 그리 기

테스트 함 수 는 주로 최적화 알고리즘 특성 을 평가 하 는 데 사 용 됩 니 다.여기 서 저 는 python 3 으로 일부 테스트 함수 의 그림 을 그 렸 습 니 다.구체 적 인 테스트 함 수 는 위 키 백과 와 결합 하여 알 수 있다.테스트 함수 의 그림 을 표시 하려 면 코드 끝 에 대응 하 는 주석 을 제거 하면 됩 니 다.구체 적 인 코드 는 다음 과 같 습 니 다.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


def draw_pic(X, Y, Z, z_max, title, z_min=0):
 fig = plt.figure()
 ax = Axes3D(fig)
 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
 # ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
 ax.set_zlim(z_min, z_max)
 ax.set_title(title)
 # plt.savefig("./myProject/Algorithm/pic/%s.png" % title) #     
 plt.show()


def get_X_AND_Y(X_min, X_max, Y_min, Y_max):
 X = np.arange(X_min, X_max, 0.1)
 Y = np.arange(Y_min, Y_max, 0.1)
 X, Y = np.meshgrid(X, Y)
 return X, Y


# rastrigin    
def Rastrigin(X_min = -5.52, X_max = 5.12, Y_min = -5.12, Y_max = 5.12):
 A = 10
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 2 * A + X ** 2 - A * np.cos(2 * np.pi * X) + Y ** 2 - A * np.cos(2 * np.pi * Y)
 return X, Y, Z, 100, "Rastrigin function"


# Ackley    
def Ackley(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = -20 * np.exp(-0.2 * np.sqrt(0.5 * (X**2 + Y**2))) - \
  np.exp(0.5 * (np.cos(2 * np.pi * X) + np.cos(2 * np.pi * Y))) + np.e + 20
 return X, Y, Z, 15, "Ackley function"


# Sphere    
def Sphere(X_min = -3, X_max = 3, Y_min = -3, Y_max = 3):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = X**2 + Y**2
 return X, Y, Z, 20, "Sphere function"


# beale    
def Beale(X_min = -4.5, X_max = 4.5, Y_min = -4.5, Y_max = 4.5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = np.power(1.5 - X + X * Y, 2) + np.power(2.25 - X + X * (Y ** 2), 2) \
  + np.power(2.625 - X + X * (Y ** 3), 2)
 return X, Y, Z, 150000, "Beale function"


# Booth    
def Booth(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = np.power(X + 2*Y - 7, 2) + np.power(2 * X + Y - 5, 2)
 return X, Y, Z, 2500, "Booth function"


# Bukin    
def Bukin(X_min = -15, X_max = -5, Y_min = -3, Y_max = 3):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 100 * np.sqrt(np.abs(Y - 0.01 * X**2)) + 0.01 * np.abs(X + 10)
 return X, Y, Z, 200, "Bukin function"


# Three-hump camel    
def three_humpCamel(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 2 * X**2 - 1.05 * X**4 + (1/6) * X**6 + X*Y + Y*2
 return X, Y, Z, 2000, "three-hump camel function"


# Hölder table    
def Holder_table(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = -np.abs(np.sin(X) * np.cos(Y) * np.exp(np.abs(1 - np.sqrt(X**2 + Y**2)/np.pi)))
 return X, Y, Z, 0, "Hölder table function", -20



z_min = None
# X, Y, Z, z_max, title = Rastrigin()
# X, Y, Z, z_max, title = Ackley()
# X, Y, Z, z_max, title = Sphere()
# X, Y, Z, z_max, title = Beale()
X, Y, Z, z_max, title = Booth()
# X, Y, Z, z_max, title = Bukin()
# X, Y, Z, z_max, title = three_humpCamel()
# X, Y, Z, z_max, title, z_min = Holder_table()

draw_pic(X, Y, Z, z_max, title, z_min)
다음은 상기 코드 가 그린 테스트 함수 의 그림 입 니 다.








그림 의 색깔 이 아직 예 쁘 지 않 은 것 같 아서 나중에 최적화 해서 고 쳤 다.
이상 이 바로 본 고의 모든 내용 입 니 다.여러분 의 학습 에 도움 이 되 고 저 희 를 많이 응원 해 주 셨 으 면 좋 겠 습 니 다.

좋은 웹페이지 즐겨찾기