Spark 연습 의 Transformation 조작 개발

Spark 연습 의 Transformation 조작 개발
  • 1. map: 집합 중의 모든 요 소 를 2
  • 로 곱 합 니 다.
  • 1.1 Java
  • 1.2 Scala
  • 2. filter: 집합 중의 짝수
  • 를 걸 러 냅 니 다.
  • 2.1 Java
  • 2.2 Scala
  • 3. flatMap: 줄 을 단어 로 나 누 기
  • 3.1 Java
  • 3.2 Scala
  • 4. groupByKey: 각 반 의 성적 을 조로 나 누 기
  • 4.1 Java
  • 2.2 Scala
  • 5. reduceByKey: 각 반 의 총 점 통계
  • 5.1 Java
  • 5.2 Scala
  • 6. sortByKey: 학생 점 수 를 정렬
  • 6.1 Java
  • 6.2 Scala
  • 7. join: 모든 학생 의 성적 인쇄
  • 7.1 Java
  • 7.2 Scala
  • 8. cogroup: 모든 학생 의 성적 인쇄
  • 8.1 Java
  • 9. main 함수
  • 9.1 Java
  • 9.2 Scala

  • 1. map: 집합 중의 모든 요 소 를 2 로 곱 합 니 다.
    1.1 Java
    /**
         * map  :             2
         */
        private static void map() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("map")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            //    
            List numbers = Arrays.asList(1, 2, 3, 4, 5);
            //     ,    RDD
            JavaRDD numberRDD = sc.parallelize(numbers);
            //  map  ,            2
            //map  ,       RDD,      
            // Java ,map        Function  
            //   Function  ,              ,      ,           
            //  call()       ,             
            // call()    ,      RDD                ,         
            //              RDD
            JavaRDD multipleNUmberRDD = numberRDD.map(new Function() {
                private static final long serivalVersionUID = 1L;
    
                //  call   , 1,2,3,4,5
                //     2,4,6,8,10
                @Override
                public Integer call(Integer integer) throws Exception {
                    return integer * 2;
                }
            });
            //    RDD
            multipleNUmberRDD.foreach(new VoidFunction() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public void call(Integer integer) throws Exception {
                    System.out.println(integer);
                }
            });
    
            //  JavaSparkContext
            sc.close();
        }
    

    1.2 Scala
    def map(): Unit = {
        val conf = new SparkConf().setAppName("map").setMaster("local")
        val sc = new SparkContext(conf)
        val numbers = Array(1, 2, 3, 4, 5)
        val numberRDD = sc.parallelize(numbers, 1)
        val multipleNumberRDD = numberRDD.map(num => num * 2)
        multipleNumberRDD.foreach(num => println(num))
    
      }
    

    2. filter: 집합 중의 짝수 를 걸 러 냅 니 다.
    2.1 Java
    /**
         * filter  :        
         */
        private static void filter() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("map")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            //    
            List numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            //     ,    RDD
            JavaRDD numberRDD = sc.parallelize(numbers);
            //    RDD  filter  ,        
            //filter    ,     Function,        , map    
            //  ,     ,  call()        Boolean
            //     RDD    ,    call()  ,                 
            //              
            //      RDD       ,     true,  ,  false
            JavaRDD evenNumberRDD = numberRDD.filter(new Function() {
                private static final long serivalVersionUID = 1L;
    
                //  call   , 1,2,3,4,5
                //     2,4,6,8,10
                @Override
                public Boolean call(Integer integer) throws Exception {
                    return integer % 2 == 0;
                }
            });
            //    RDD
            evenNumberRDD.foreach(new VoidFunction() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public void call(Integer integer) throws Exception {
                    System.out.println(integer);
                }
            });
    
            //  JavaSparkContext
            sc.close();
        }
    

    2.2 Scala
    def filter(): Unit = {
        val conf = new SparkConf().setAppName("filter").setMaster("local")
        val sc = new SparkContext(conf)
        val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
        val numberRDD = sc.parallelize(numbers, 1)
        val multipleNumberRDD = numberRDD.filter(num => num % 2 == 0)
        multipleNumberRDD.foreach(num => println(num))
      }
    

    3. flatMap: 줄 을 단어 로 나 눕 니 다.
    3.1 Java
    /**
         * flatMap  :        
         */
        private static void flatMap() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("flatMap")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            //    
            List lineList = Arrays.asList("hello you", "hello me", "hello world");
            //     ,    RDD
            JavaRDD lines = sc.parallelize(lineList);
            //    RDD  flatMap  ,      ,       
            //flatMap  , Java ,      FlagMapFunction
            //     FlatMapFunction        ,             
            //call()  ,     ,  U,  Iterable,   U           
            //flatMap    ,    RDD      ,             ,          
            //    ,    Iterator   ,    ArrayList   
            JavaRDD words = lines.flatMap(new FlatMapFunction() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public Iterator call(String s) throws Exception {
                    return (Iterator) Arrays.asList(s.split(" "));
                }
            });
            //    RDD
            words.foreach(new VoidFunction() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public void call(String t) throws Exception {
                    System.out.println(t);
                }
            });
    
            //  JavaSparkContext
            sc.close();
        }
    

    3.2 Scala
     def flatMap(): Unit = {
        val conf = new SparkConf().setAppName("flatMap").setMaster("local")
        val sc = new SparkContext(conf)
        val lineArray = Array("hello you", "hello me", "hello world")
        val lines = sc.parallelize(lineArray, 1)
        val words = lines.flatMap(line => line.split(" "))
        words.foreach(word => println(word))
      }
    

    4. groupby Key: 각 반 의 성적 을 그룹 으로 나 눕 니 다.
    4.1 Java
    /**
         * groupNyKey  :           
         */
        private static void groupByKey() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("groupByKey")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            //    
            List> scoresList = Arrays.asList(
                    new Tuple2<>("class1", 80),
                    new Tuple2<>("class2", 88),
                    new Tuple2<>("class1", 80),
                    new Tuple2<>("class2", 90));
            //     ,  JavaPairRDD
            JavaPairRDD scores = sc.parallelizePairs(scoresList);
            //  Scores RDD,  groupByKey  ,            
            //groupByKey  ,     JavaPairRDD
            //  ,JavaPairRDD          ,          Iterable      
            //    ,   Key    ,  key       value,    value    Iterable
            //     ,     groupedScores  JavaPairRDD          
            JavaPairRDD> groupEdScores = scores.groupByKey();
            //  groupedScores RDD
            groupEdScores.foreach(new VoidFunction>>() {
                private static final long serivalVersionUID = 1L;
    
                //   key,    value,    call  
                //       key     value
                //  ,   key     value,     Tuple2,   RDD   
                @Override
                public void call(Tuple2> stringIterableTuple2) throws Exception {
                    System.out.println("class:" + stringIterableTuple2._1);
                    Iterator ite = stringIterableTuple2._2.iterator();
                    while (ite.hasNext()) {
                        System.out.println(ite.next());
                    }
                    System.out.println("====================================");
                }
            });
            //  JavaSparkContext
            sc.close();
        }
    

    2.2 Scala
    def groupByKey(): Unit = {
        val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(new Tuple2[String, Integer]("class1", 80),
          new Tuple2[String, Integer]("class2", 88),
          new Tuple2[String, Integer]("class1", 80),
          new Tuple2[String, Integer]("class2", 90))
        val scores = sc.parallelize(scoreList, 1)
        val groupedScores = scores.groupByKey()
        groupedScores.foreach(
          score => {
            println(score._1)
            score._2.foreach(singleScore => println(singleScore))
            println("===========")
          }
        )
      }
    

    5. reduceByKey: 각 반 의 총 점 을 통계 합 니 다.
    5.1 Java
    /**
         * reduceNyKey  :         
         */
        private static void reduceNyKey() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("reduceNyKey")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            //    
            List> scoresList = Arrays.asList(
                    new Tuple2<>("class1", 80),
                    new Tuple2<>("class2", 88),
                    new Tuple2<>("class1", 80),
                    new Tuple2<>("class2", 90));
            //     ,  JavaPairRDD
            JavaPairRDD scores = sc.parallelizePairs(scoresList);
            //  Scores RDD,  reduceByKey  
            //reduceByKey,      Function2  ,        ,      3  
            //               ,     RDD     value   
            //     key  reduce,        、   value  ,       value  
            //    ,           ,  call()            
            //       ,     reduce         ,       RDD value     
            //reduceByKey     RDD,  JavaPairRDD
            JavaPairRDD totalScores = scores.reduceByKey(new Function2() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public Integer call(Integer v1, Integer v2) throws Exception {
                    return v1 + v2;
                }
            });
            //  totalScore RDD
            //  groupedScores RDD
            totalScores.foreach(new VoidFunction>() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public void call(Tuple2 t) throws Exception {
                    System.out.println(t._1 + ":" + t._2);
    
                }
            });
            //  JavaSparkContext
            sc.close();
        }
    

    5.2 Scala
    def reduceByKey(): Unit = {
        val conf = new SparkConf().setAppName("reduceByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(new Tuple2[String, Integer]("class1", 80),
          new Tuple2[String, Integer]("class2", 88),
          new Tuple2[String, Integer]("class1", 80),
          new Tuple2[String, Integer]("class2", 90))
        val scores = sc.parallelize(scoreList, 1)
        val totalScores = scores.reduceByKey(_ + _)
        totalScores.foreach(classScore => println(classScore._1 + ":" + classScore._2))
      }
    

    6. sortByKey: 학생 점 수 를 정렬 합 니 다.
    6.1 Java
    /**
         * sortByKey  :          
         */
        private static void sortByKey() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("sortByKey")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            //    
            List> scoresList = Arrays.asList(
                    new Tuple2<>(65, "leo"),
                    new Tuple2<>(60, "tom"),
                    new Tuple2<>(90, "marry"),
                    new Tuple2<>(88, "jack"));
            //     ,  JavaPairRDD
            JavaPairRDD scores = sc.parallelizePairs(scoresList);
    
            // scoreRDD  sortByKey  
            //sortByKey      key    ,        ,    
            //   ,  JavaPairRDD,           RDD  
            //  RDD         
            JavaPairRDD sortedScored = scores.sortByKey();
    
            //  sortedScored RDD
            sortedScored.foreach(new VoidFunction>() {
                private static final long serivalVersionUID = 1L;
    
                @Override
                public void call(Tuple2 t) throws Exception {
                    System.out.println(t._1 + ":" + t._2);
                }
            });
            //  JavaSparkContext
            sc.close();
        }
    

    6.2 Scala
    def sortByKey(): Unit = {
        val conf = new SparkConf().setAppName("sortByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(new Tuple2[Integer, String](90, "cat"),
          new Tuple2[Integer, String](80, "leo"),
          new Tuple2[Integer, String](80, "opp"),
          new Tuple2[Integer, String](55, "lll"))
        val scores = sc.parallelize(scoreList, 1)
        val totalScores = scores.sortByKey()
        totalScores.foreach(studentScore => println(studentScore._1 + ":" + studentScore._2))
      }
    

    7. join: 모든 학생 의 성적 을 인쇄 합 니 다.
    7.1 Java
    /**
         * join  :      
         */
        private static void join() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("join")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            //    
            List> studentList = Arrays.asList(
                    new Tuple2<>(1, "leo"),
                    new Tuple2<>(2, "tom"),
                    new Tuple2<>(3, "marry"),
                    new Tuple2<>(4, "jack"));
            //    
            List> scoreList = Arrays.asList(
                    new Tuple2<>(1, 100),
                    new Tuple2<>(2, 80),
                    new Tuple2<>(3, 50),
                    new Tuple2<>(4, 20));
            //     RDD
            JavaPairRDD student = sc.parallelizePairs(studentList);
            JavaPairRDD scores = sc.parallelizePairs(scoreList);
    
            //  join      RDD
            //join  ,     key  join,   JavaPairRDD
            //  JavaPairRDD        ,    JavaPairRDD key  ,     key  join 
            //       , Tuple2   ,Tuple2          RDD value   
            //join,    RDD      ,    Key join    pair
            //   (1,1)(1,2)(1,3)   RDD (1,4)(2,1)(2.2)   RDD
            //join  ,      (1,(1,4))(1,(2,4))(1,(3,4))
            JavaPairRDD> studentScores = student.join(scores);
    
            //  sortedScored RDD
            studentScores.foreach(new VoidFunction>>() {
                @Override
                public void call(Tuple2> t) throws Exception {
                    System.out.println("student id:" + t._1);
                    System.out.println("student name:" + t._2._1);
                    System.out.println("student score:" + t._2._2);
                    System.out.println("==============");
                }
            });
    
    
            //  JavaSparkContext
            sc.close();
        }
    

    7.2 Scala
    def join(): Unit = {
        val conf = new SparkConf().setAppName("join").setMaster("local")
        val sc = new SparkContext(conf)
    
        //    
        val studentList = Array(
          new Tuple2[Integer, String](1, "leo"),
          new Tuple2[Integer, String](2, "tom"),
          new Tuple2[Integer, String](3, "marry"))
        //    
        val scoreList = Array(
          new Tuple2[Integer, Integer](1, 100), new Tuple2[Integer, Integer](2, 80),
          new Tuple2[Integer, Integer](3, 50), new Tuple2[Integer, Integer](1, 70),
          new Tuple2[Integer, Integer](2, 10), new Tuple2[Integer, Integer](3, 40))
    
        val student = sc.parallelize(studentList)
        val scores = sc.parallelize(scoreList)
    
        val studentScores = student.join(scores)
        studentScores.foreach(studentScore => println({
          System.out.println("student id:" + studentScore._1)
          System.out.println("student name:" + studentScore._2._1)
          System.out.println("student score:" + studentScore._2._2)
          System.out.println("==============")
        }))
      }
    

    8. cogroup: 모든 학생 의 성적 을 인쇄 합 니 다.
    8.1 Java
    /**
         * cogroup  :      
         */
        private static void cogroup() {
            //  SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("cogroup")
                    .setMaster("local");
            //  JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            //    
            List> studentList = Arrays.asList(
                    new Tuple2<>(1, "leo"),
                    new Tuple2<>(2, "tom"),
                    new Tuple2<>(3, "marry"));
            //    
            List> scoreList = Arrays.asList(
                    new Tuple2<>(1, 100),
                    new Tuple2<>(2, 80),
                    new Tuple2<>(3, 50),
                    new Tuple2<>(1, 70),
                    new Tuple2<>(2, 10),
                    new Tuple2<>(3, 40));
            //     RDD
            JavaPairRDD student = sc.parallelizePairs(studentList);
            JavaPairRDD scores = sc.parallelizePairs(scoreList);
    
            //cogroup join  
            //    ,  key join    value,      Iterable    
            JavaPairRDD, Iterable>> studentScores = student.cogroup(scores);
    
            //  sortedScored RDD
            studentScores.foreach(new VoidFunction, Iterable>>>() {
                @Override
                public void call(Tuple2, Iterable>> t) throws Exception {
                    System.out.println("student id:" + t._1);
                    System.out.println("student name:" + t._2._1);
                    System.out.println("student score:" + t._2._2);
                    System.out.println("==============");
                }
            });
            //  JavaSparkContext
            sc.close();
        }
    

    9. main 함수
    9.1 Java
    public static void main(String[] args) {
            //map();
            //filter();
            //flatMap();
            //groupByKey();
            //reduceNyKey();
            //sortByKey();
            //join();
            cogroup();
        }
    

    9.2 Scala
    def main(args: Array[String]) {
        //map()
        //filter()
        //flatMap()
        //groupByKey()
        //reduceByKey()
        //sortByKey()
        join()
      }
    

    좋은 웹페이지 즐겨찾기