python 고 스 분포 확률 밀도 함수 사용 상세 설명

다음 과 같다.

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib import style
style.use('fivethirtyeight')
mu_params = [-1, 0, 1]
sd_params = [0.5, 1, 1.5]
x = np.linspace(-7, 7, 100)
f, ax = plt.subplots(len(mu_params), len(sd_params), sharex=True, sharey=True, figsize=(12,8))
for i in range(3):
  for j in range(3):
    mu = mu_params[i]
    sd = sd_params[j]
    y = stats.norm(mu, sd).pdf(x)
    ax[i, j].plot(x, y)
    ax[i, j].plot(0,0, label='mu={:3.2f}
sigma={:3.2f}'.format(mu,sd), alpha=0) ax[i, j].legend(fontsize=10) ax[2,1].set_xlabel('x', fontsize=16) ax[1,0].set_ylabel('pdf(x)', fontsize=16) plt.suptitle('Gaussian PDF', fontsize=16) plt.tight_layout() plt.show()

이상 의 python 고 스 분포 확률 밀도 함수 의 사용 에 대한 상세 한 설명 은 바로 소 편 이 여러분 에 게 공유 한 모든 내용 입 니 다.여러분 께 참고 가 되 고 저희 도 많이 응원 해 주 셨 으 면 좋 겠 습 니 다.

좋은 웹페이지 즐겨찾기