데이터 구조 트 리 예제 Complete Binary Search Tree
The left subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the left and right subtrees must also be binary search trees. A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10 1 2 3 4 5 6 7 8 9 0 Sample Output:
6 3 8 1 5 7 9 0 2 4
#include
#include
#include
int compare(const void* a, const void* b);
void Solve(int A[], int T[], int ALeft, int ARight, int TRoot);
int GetLeftLength(int n);
int main()
{
int N, IsLegal = 0;//N
int* A, *T;// ,
int i;
QQ: ;
IsLegal = scanf("%d", &N);
if(N < 0 || N > 1000 || IsLegal != 1){
printf("N \t
");
goto QQ;
}
T = (int*)malloc(N * sizeof(int));
A = (int*)malloc(N * sizeof(int));
if(A == NULL){
printf(" A
");
exit(1);
}else if(T == NULL){
printf(" T
");
exit(1);
}
for(i = 0; i < N; i++){
scanf("%d", &A[i]);
}
qsort(A, N, sizeof(int), compare);//
Solve(A, T, 0, N - 1, 0);
for(i = 0; i < N - 1; i++){
printf("%d ", T[i]);
}
printf("%d
", T[N - 1]);
free(A);
free(T);
return 0;
}
int compare(const void* a, const void* b)
{
return *(int*)a - *(int*)b;
}
void Solve(int A[], int T[], int ALeft, int ARight, int TRoot)
{// T, ,
int n, L, LeftRoot, RightRoot;
n = ARight - ALeft + 1;
if(n == 0) return;//
L = GetLeftLength(n);// n ,
T[TRoot] = A[ALeft + L];// , T
LeftRoot = TRoot * 2 + 1;// T
RightRoot = LeftRoot + 1;// T
Solve(A, T, ALeft, ALeft + L -1, LeftRoot);
Solve(A, T, ALeft + L + 1, ARight, RightRoot);
}
int GetLeftLength(int n)
{
int H, x1, x2, x, L;
H = floor((log10(n + 1)) / log10(2));
x1 = n + 1 - pow(2, H);
x2 = pow(2, H - 1);
if(x1 < x2){
x = x1;
}else{
x = x2;
}
L = x2 - 1 + x;
return L;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
정수 반전Udemy 에서 공부 한 것을 중얼거린다 Chapter3【Integer Reversal】 (예) 문자열로 숫자를 반전 (toString, split, reverse, join) 인수의 수치 (n)가 0보다 위 또는 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.