Uva 11419-SAM I AM(최대 일치 템 플 릿,최소 덮어 쓰기 템 플 릿 찾기)
6097 단어 uva
Problem CSAM I AMInput: Standard Input
Output: Standard Output
The world is in great danger!! Mental's forces have returned to Earth to eradicate humankind. Our last hope to stop this great evil is Sam “Serious” Stone. Equipped with various powerful weapons, Serious Sam starts his mission to destroy the forces of evil.
After fighting two days and three nights, Sam is now in front of the temple KOPTOS where Mental's general Ugh Zan III is waiting for him. But this time, he has a serious problem. He is in shortage of ammo and a lot of enemies crawling inside the temple waiting for him. After rounding thetemple Sam finds that the temple is in rectangle shape and he has the locations of all enemies in the temple.
All of a sudden he realizes that he can kill the enemies without entering the temple using the great cannon ball which spits out a gigantic ball bigger than him killing anything it runs into and keeps on rolling until it finally explodes. But the cannonball can only shoot horizontally or vertically and all the enemies along the path of that cannon ball will be killed.
Now he wants to save as many cannon balls as possible for fighting with Mental. So, he wants to know the minimum number of cannon balls and the positions from which he can shoot the cannonballs to eliminate all enemies from outside that temple.
Input
Here, the temple is defined as a RXC grid. The first line of each test case contains 3 integers: R(0
Output
For each test case there will be one line output. First print the minimum number (m) of cannonballs needed to wipe out the enemies followed by a single space and then m positions from which he can shoot those cannonballs. For shooting horizontally print “r” followed by the row number and for vertical shooting print “c” followed by the column number. If there is more than one solution any one will do.
Sample Input Output for Sample Input
4 4 3 1 1 1 4 3 2 4 4 2 1 1 2 2 0 0 0
2 r1 r3 2 r1 r2
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 1000 + 5; //
//
struct BPM {
int n, m; //
vector<int> G[maxn]; //
int left[maxn]; // left[i] i ,-1
bool T[maxn]; // T[i] i
int right[maxn]; //
bool S[maxn]; //
void init(int n, int m) {
this->n = n;
this->m = m;
for(int i = 0; i < n; i++) G[i].clear();
}
void AddEdge(int u, int v) {
G[u].push_back(v);
}
bool match(int u){
S[u] = true;
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (!T[v]){
T[v] = true;
if (left[v] == -1 || match(left[v])){
left[v] = u;
right[u] = v;
return true;
}
}
}
return false;
}
//
int solve() {
memset(left, -1, sizeof(left));
memset(right, -1, sizeof(right));
int ans = 0;
for(int u = 0; u < n; u++) { // u
memset(S, 0, sizeof(S));
memset(T, 0, sizeof(T));
if(match(u)) ans++;
}
return ans;
}
// 。X Y
int mincover(vector<int>& X, vector<int>& Y) {
int ans = solve();
memset(S, 0, sizeof(S));
memset(T, 0, sizeof(T));
for(int u = 0; u < n; u++)
if(right[u] == -1) match(u); // X
for(int u = 0; u < n; u++)
if(!S[u]) X.push_back(u); // X
for(int v = 0; v < m; v++)
if(T[v]) Y.push_back(v); // Y
return ans;
}
};
BPM solver;
int R, C, N;
int main(){
int kase = 0;
while(scanf("%d%d%d", &R, &C, &N) == 3 && R && C && N) {
solver.init(R, C);
for(int i = 0; i < N; i++) {
int r, c;
scanf("%d%d", &r, &c); r--; c--;
solver.AddEdge(r, c);
}
vector<int> X, Y;
int ans = solver.mincover(X, Y);// X,Y
printf("%d", ans);
for(int i = 0; i < X.size(); i++) printf(" r%d", X[i]+1);
for(int i = 0; i < Y.size(); i++) printf(" c%d", Y[i]+1);
printf("
");
}
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
UVA - 10986 Sending email(Dijkstra 인접 테이블 + 우선 순위 대기열 최적화)제목 대의: s점에서 t점까지의 최소 거리를 구하는 그림을 주세요. 확인: 적나라한 최단길이지만 n이 너무 크면 인접 행렬을 사용할 수 없기 때문에 Dijkstra에 대한 인접표 + 우선 대기열 최적화가 필요합니다....
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.