[Swift] vDSP를 통해 사운드 밸런싱
개시하다
vDSP는 수치 계산과 디지털 신호 처리를 신속하게 하는 프로그램 라이브러리이다.엑스코드와 함께 포장되어 있어 바로 사용 가능합니다.
그러면 vDSP에는 이중 필터
vDSP.Biquad
가 포함됩니다.iOS 14부터 사용할 수 있으니 시도해 보세요.설치 예
다음은 설치 예입니다.읽기
/tmp/input.wav
후 로우 패스 필터(주파수 220Hz/Q 값 1.23)를 적용한 결과/tmp/output.wav
로 쓰기 처리됩니다.import Accelerate
import AVFoundation
class FilterParameter {
let b0: Double
let b1: Double
let b2: Double
let a1: Double
let a2: Double
init(_ b0: Double, _ b1: Double, _ b2: Double, _ a1: Double, _ a2: Double) {
self.b0 = b0
self.b1 = b1
self.b2 = b2
self.a1 = a1
self.a2 = a2
}
}
class LowPassFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, q: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) / (2.0 * q)
let a0: Double = 1.0 + alpha
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha
let b0: Double = (1.0 - cos(w0)) / 2.0
let b1: Double = 1.0 - cos(w0)
let b2: Double = (1.0 - cos(w0)) / 2.0
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class HighPassFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, q: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) / (2.0 * q)
let a0: Double = 1.0 + alpha
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha
let b0: Double = (1.0 + cos(w0)) / 2.0
let b1: Double = -1.0 * (1.0 + cos(w0))
let b2: Double = (1.0 + cos(w0)) / 2.0
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class AllPassFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, q: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) / (2.0 * q)
let a0: Double = 1.0 + alpha
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha
let b0: Double = 1.0 - alpha
let b1: Double = -2.0 * cos(w0)
let b2: Double = 1.0 + alpha
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class BandPassFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, width: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) * sinh(log(2.0) / 2.0 * width * w0 / sin(w0))
let a0: Double = 1.0 + alpha
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha
let b0: Double = alpha
let b1: Double = 0.0
let b2: Double = -1.0 * alpha
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class BandRejectFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, width: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) * sinh(log(2.0)/2.0 * width * w0 / sin(w0))
let a0: Double = 1.0 + alpha
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha
let b0: Double = 1.0
let b1: Double = -2.0 * cos(w0)
let b2: Double = 1.0
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class LowShelfFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, q: Double, gain: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let a: Double = pow(10.0, (gain / 40.0))
let beta: Double = a.squareRoot() / q
let a0: Double = (a + 1.0) + (a - 1.0)*cos(w0) + beta * sin(w0)
let a1: Double = -2.0 * ((a - 1.0) + (a + 1.0)*cos(w0))
let a2: Double = (a + 1.0) + (a - 1.0)*cos(w0) - beta * sin(w0)
let b0: Double = a * ((a + 1.0) - (a - 1.0)*cos(w0) + beta * sin(w0))
let b1: Double = 2.0 * a * ((a - 1.0) - (a + 1.0)*cos(w0))
let b2:Double = a * ((a + 1.0) - (a - 1.0)*cos(w0) - beta * sin(w0))
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class HighShelfFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, q: Double, gain: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let a: Double = pow(10.0, (gain / 40.0))
let beta: Double = a.squareRoot() / q
let a0: Double = (a + 1.0) - (a - 1.0)*cos(w0) + beta * sin(w0)
let a1: Double = 2.0 * ((a - 1.0) - (a + 1.0)*cos(w0))
let a2: Double = (a + 1.0) - (a - 1.0)*cos(w0) - beta * sin(w0)
let b0: Double = a * ((a + 1.0) + (a - 1.0)*cos(w0) + beta * sin(w0))
let b1: Double = -2.0 * a * ((a - 1.0) + (a + 1.0)*cos(w0))
let b2: Double = a * ((a + 1.0) + (a - 1.0)*cos(w0) - beta * sin(w0))
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
class PeakingFilterParameter: FilterParameter {
init(sampleRate: Double, frequency: Double, width: Double, gain: Double) {
let w0: Double = 2.0 * Double.pi * frequency / sampleRate
let alpha: Double = sin(w0) * sinh(log(2.0)/2.0 * width * w0 / sin(w0))
let a: Double = pow(10.0, (gain / 40.0))
let a0: Double = 1.0 + alpha / a
let a1: Double = -2.0 * cos(w0)
let a2: Double = 1.0 - alpha / a
let b0: Double = 1.0 + alpha * a
let b1: Double = -2.0 * cos(w0)
let b2: Double = 1.0 - alpha * a
super.init(b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0)
}
}
func readPCMBuffer(url: URL) -> AVAudioPCMBuffer? {
guard let input = try? AVAudioFile(forReading: url, commonFormat: .pcmFormatInt16, interleaved: false) else {
return nil
}
guard let buffer = AVAudioPCMBuffer(pcmFormat: input.processingFormat, frameCapacity: AVAudioFrameCount(input.length)) else {
return nil
}
do {
try input.read(into: buffer)
} catch {
return nil
}
return buffer
}
func writePCMBuffer(url: URL, buffer: AVAudioPCMBuffer) throws {
let settings: [String: Any] = [
AVFormatIDKey: buffer.format.settings[AVFormatIDKey] ?? kAudioFormatLinearPCM,
AVNumberOfChannelsKey: buffer.format.settings[AVNumberOfChannelsKey] ?? 2,
AVSampleRateKey: buffer.format.settings[AVSampleRateKey] ?? 44100,
AVLinearPCMBitDepthKey: buffer.format.settings[AVLinearPCMBitDepthKey] ?? 16
]
do {
let output = try AVAudioFile(forWriting: url, settings: settings, commonFormat: .pcmFormatInt16, interleaved: false)
try output.write(from: buffer)
} catch {
throw error
}
}
func applyLowPassFilter(from inputPath: String, to outputPath: String) {
guard let inputBuffer = readPCMBuffer(url: URL(string: inputPath)!) else {
fatalError("failed to read \(inputPath)")
}
guard let outputBuffer = AVAudioPCMBuffer(pcmFormat: inputBuffer.format, frameCapacity: inputBuffer.frameLength) else {
fatalError("failed to create a buffer for writing")
}
guard let inputInt16ChannelData = inputBuffer.int16ChannelData else {
fatalError("failed to obtain underlying input buffer")
}
guard let outputInt16ChannelData = outputBuffer.int16ChannelData else {
fatalError("failed to obtain underlying output buffer")
}
// Calculate a filter coefficients. (Type = low-pass / Cut off frequency = 440 Hz / Q-value = 1.23)
let parameter = LowPassFilterParameter(sampleRate: inputBuffer.format.sampleRate, frequency: 220.0, q: 1.23)
// Because the input might be stereo, create filters for each channels.
var filters = [vDSP.Biquad](repeating: vDSP.Biquad(coefficients: [parameter.b0, parameter.b1, parameter.b2, parameter.a1, parameter.a2], channelCount: 1, sectionCount: 1, ofType: Float.self)!, count: Int(inputBuffer.format.channelCount))
for channel in 0 ..< Int(inputBuffer.format.channelCount) {
let p1: UnsafeMutablePointer<Int16> = inputInt16ChannelData[channel]
let p2: UnsafeMutablePointer<Int16> = outputInt16ChannelData[channel]
var signal = [Float](repeating: 0.0, count: Int(inputBuffer.frameLength))
for i in 0 ..< Int(inputBuffer.frameLength) {
signal[i] = Float(p1[i]) / 32767.0
}
signal = filters[channel].apply(input: signal)
for i in 0 ..< Int(inputBuffer.frameLength) {
if signal[i] < -1.0 {
p2[i] = -32767
} else if signal[i] > 1.0 {
p2[i] = 32767
} else {
p2[i] = Int16(Int(signal[i] * 32767))
}
}
}
outputBuffer.frameLength = inputBuffer.frameLength
do {
try writePCMBuffer(url: URL(string: outputPath)!, buffer: outputBuffer)
} catch {
fatalError("failed to write \(outputPath)")
}
}
applyLowPassFilter(from: "file:///tmp/input.wav", to: "file:///tmp/output.wav")
상기 내용을 main.swift
로 저장하고 다음과 같이 집행한다.$ swift main.swift
실시례에서 저통 필터를 포함한 총 8종의 필터를 정의했다.파라미터를 가지고 놀아 주세요.설치 고려 사항
아직 주의해야 할 정도는 아니지만 vDSP.비쿼드에게 주는 계수는 6개가 아닌 5개다.
a0
정규화1
.참고 문헌
Reference
이 문제에 관하여([Swift] vDSP를 통해 사운드 밸런싱), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://zenn.dev/moutend/articles/006a949fdd9d176bf878텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)