Chainer를 이용한 간단한 신경망 구현 ~ 데이터 준비편 ~
이번에는
1. 데이터 준비
2. 모델 설명
3. 최적화 알고리즘 설정
4. 학습
5. 결과 출력
중
1. 데이터 준비
에 대해 씁니다.
Iris 데이터
이번에는 샘플 데이터로 Iris (아야메)의 데이터를 사용합니다. 기계 학습에서는 Iris 데이터가 자주 사용되는 것 같습니다.
이 Iris의 데이터는 Python의 기계 학습 라이브러리 scikit-learn에서 쉽게 소개 할 수 있습니다. scikit-learn 자체는 pip로 설치할 수 있습니다.
$ pip install scikit-learn
그건 그렇고, scikit-learn을 설치하기위한 조건으로 2016 년 11 월 18 일 현재
Python (>= 2.6 or >= 3.3),
NumPy (>= 1.6.1),
SciPy (>= 0.9).
인 것이 요구됩니다.
이 Iris의 데이터 내용은 4 차원 벡터입니다.
내용을 확인해 보겠습니다.
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris
>>> iris
{'target_names': array(['setosa', 'versicolor', 'virginica'],
dtype='<U10'), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'data': array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],
[ 5.7, 4.4, 1.5, 0.4],
[ 5.4, 3.9, 1.3, 0.4],
[ 5.1, 3.5, 1.4, 0.3 .................
여러가지 들어가 있습니다만, 일단 필요한 것은 data와 target입니다.
>>> iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],...........
>>> iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
데이터는 4 차원 벡터이며, 각각
- 꽃잎의 길이
- 꽃잎 폭
- 쓰레기 조각의 길이
- 쓰레기 조각의 너비
입니다.
그것에 대응하는 target은 Iris의 종류입니다. 각각
-setosa
-versicolor
-virginica
입니다.
어쨌든 이미지는 잡은 것이 아닐까요.
교사 데이터 및 테스트 데이터
기계 학습에는 분류기에 데이터의 특징을 가르치기 위한 교사 데이터와 완성된 분류기의 정밀도를 측정하기 위한 테스트 데이터가 필요합니다. 이와 같이 준비한 데이터를 교사 데이터, 테스트 데이터로 나누어 타당성을 검증하는 것을 cross-validation(교차 검증)이라고 합니다.
4차원의 iris 벡터에 대해서, 그 종류가 0, 1, 2의 라벨로 대응지어져 있는 상태입니다.
>>>iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],......
>>>iris.target
array([0, 0, 0,.....
신경망에 학습시키기 위해서는 target도 벡터화할 필요가 있으므로 처리를 실시합니다.
즉, iris가 setosa이면,
[1, 0, 0]
합니다.
iris가 versicolor이면
[0, 1, 0]입니다. 정답의 차원에 1을 넣습니다.
>>>n = y.size
>>>y.zeros(n * 3).reshape(n, 3).astype(np.float32)
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
넣을 수 있었으므로 나머지는 값을 넣어갑니다.
>>>for i in range(n):
y2[i, y[i]] = 1.0
>>> y2
array([[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.]], dtype=float32)
요소는 data, target 모두 150이므로 index를 준비합니다.
>>>index = np.arange(n)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149])
index 배열의 홀수 요소를 교사 데이터, 짝수를 테스트 데이터로합니다.
>>>xtrain = x[index[index % 2 != 0], :]
>>>ytrain = y2[index[index % 2 != 0], :]
>>>xtest = x[index[index % 2 == 0], :]
>>>ytest = y2[index[index % 2 == 0], :]
이와 같이 대응하는 데이터로 데이터를 준비합니다.
이번에는 여기까지
참고
야마시타 타카요시
일러스트에서 알 수있는 딥 러닝 코단샤
신나 히로유키
Chainer에 의한 실천 심층 학습~복잡한 NN의 실장 방법~ 오옴사
Reference
이 문제에 관하여(Chainer를 이용한 간단한 신경망 구현 ~ 데이터 준비편 ~), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/hatt0519/items/aed0ad38040a234cc9ed
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
$ pip install scikit-learn
Python (>= 2.6 or >= 3.3),
NumPy (>= 1.6.1),
SciPy (>= 0.9).
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris
>>> iris
{'target_names': array(['setosa', 'versicolor', 'virginica'],
dtype='<U10'), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'data': array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],
[ 5.7, 4.4, 1.5, 0.4],
[ 5.4, 3.9, 1.3, 0.4],
[ 5.1, 3.5, 1.4, 0.3 .................
>>> iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],...........
>>> iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
기계 학습에는 분류기에 데이터의 특징을 가르치기 위한 교사 데이터와 완성된 분류기의 정밀도를 측정하기 위한 테스트 데이터가 필요합니다. 이와 같이 준비한 데이터를 교사 데이터, 테스트 데이터로 나누어 타당성을 검증하는 것을 cross-validation(교차 검증)이라고 합니다.
4차원의 iris 벡터에 대해서, 그 종류가 0, 1, 2의 라벨로 대응지어져 있는 상태입니다.
>>>iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],......
>>>iris.target
array([0, 0, 0,.....
신경망에 학습시키기 위해서는 target도 벡터화할 필요가 있으므로 처리를 실시합니다.
즉, iris가 setosa이면,
[1, 0, 0]
합니다.
iris가 versicolor이면
[0, 1, 0]입니다. 정답의 차원에 1을 넣습니다.
>>>n = y.size
>>>y.zeros(n * 3).reshape(n, 3).astype(np.float32)
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
넣을 수 있었으므로 나머지는 값을 넣어갑니다.
>>>for i in range(n):
y2[i, y[i]] = 1.0
>>> y2
array([[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.]], dtype=float32)
요소는 data, target 모두 150이므로 index를 준비합니다.
>>>index = np.arange(n)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149])
index 배열의 홀수 요소를 교사 데이터, 짝수를 테스트 데이터로합니다.
>>>xtrain = x[index[index % 2 != 0], :]
>>>ytrain = y2[index[index % 2 != 0], :]
>>>xtest = x[index[index % 2 == 0], :]
>>>ytest = y2[index[index % 2 == 0], :]
이와 같이 대응하는 데이터로 데이터를 준비합니다.
이번에는 여기까지
참고
야마시타 타카요시
일러스트에서 알 수있는 딥 러닝 코단샤
신나 히로유키
Chainer에 의한 실천 심층 학습~복잡한 NN의 실장 방법~ 오옴사
Reference
이 문제에 관하여(Chainer를 이용한 간단한 신경망 구현 ~ 데이터 준비편 ~), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/hatt0519/items/aed0ad38040a234cc9ed
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
Reference
이 문제에 관하여(Chainer를 이용한 간단한 신경망 구현 ~ 데이터 준비편 ~), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/hatt0519/items/aed0ad38040a234cc9ed텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)