R: 박소 베일스
> install.packages("e1071")
e1071 가져오기:
> library(e1071)
데이터 세트 찾기:
> data(iris)
> iris
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
16 5.7 4.4 1.5 0.4 setosa
17 5.4 3.9 1.3 0.4 setosa
18 5.1 3.5 1.4 0.3 setosa
19 5.7 3.8 1.7 0.3 setosa
20 5.1 3.8 1.5 0.3 setosa
21 5.4 3.4 1.7 0.2 setosa
22 5.1 3.7 1.5 0.4 setosa
23 4.6 3.6 1.0 0.2 setosa
24 5.1 3.3 1.7 0.5 setosa
25 4.8 3.4 1.9 0.2 setosa
26 5.0 3.0 1.6 0.2 setosa
27 5.0 3.4 1.6 0.4 setosa
28 5.2 3.5 1.5 0.2 setosa
29 5.2 3.4 1.4 0.2 setosa
30 4.7 3.2 1.6 0.2 setosa
31 4.8 3.1 1.6 0.2 setosa
32 5.4 3.4 1.5 0.4 setosa
33 5.2 4.1 1.5 0.1 setosa
34 5.5 4.2 1.4 0.2 setosa
35 4.9 3.1 1.5 0.2 setosa
36 5.0 3.2 1.2 0.2 setosa
37 5.5 3.5 1.3 0.2 setosa
38 4.9 3.6 1.4 0.1 setosa
39 4.4 3.0 1.3 0.2 setosa
40 5.1 3.4 1.5 0.2 setosa
41 5.0 3.5 1.3 0.3 setosa
42 4.5 2.3 1.3 0.3 setosa
43 4.4 3.2 1.3 0.2 setosa
44 5.0 3.5 1.6 0.6 setosa
45 5.1 3.8 1.9 0.4 setosa
46 4.8 3.0 1.4 0.3 setosa
47 5.1 3.8 1.6 0.2 setosa
48 4.6 3.2 1.4 0.2 setosa
49 5.3 3.7 1.5 0.2 setosa
50 5.0 3.3 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor
56 5.7 2.8 4.5 1.3 versicolor
57 6.3 3.3 4.7 1.6 versicolor
58 4.9 2.4 3.3 1.0 versicolor
59 6.6 2.9 4.6 1.3 versicolor
60 5.2 2.7 3.9 1.4 versicolor
61 5.0 2.0 3.5 1.0 versicolor
62 5.9 3.0 4.2 1.5 versicolor
63 6.0 2.2 4.0 1.0 versicolor
64 6.1 2.9 4.7 1.4 versicolor
65 5.6 2.9 3.6 1.3 versicolor
66 6.7 3.1 4.4 1.4 versicolor
67 5.6 3.0 4.5 1.5 versicolor
68 5.8 2.7 4.1 1.0 versicolor
69 6.2 2.2 4.5 1.5 versicolor
70 5.6 2.5 3.9 1.1 versicolor
71 5.9 3.2 4.8 1.8 versicolor
72 6.1 2.8 4.0 1.3 versicolor
73 6.3 2.5 4.9 1.5 versicolor
74 6.1 2.8 4.7 1.2 versicolor
75 6.4 2.9 4.3 1.3 versicolor
76 6.6 3.0 4.4 1.4 versicolor
77 6.8 2.8 4.8 1.4 versicolor
78 6.7 3.0 5.0 1.7 versicolor
79 6.0 2.9 4.5 1.5 versicolor
80 5.7 2.6 3.5 1.0 versicolor
81 5.5 2.4 3.8 1.1 versicolor
82 5.5 2.4 3.7 1.0 versicolor
83 5.8 2.7 3.9 1.2 versicolor
84 6.0 2.7 5.1 1.6 versicolor
85 5.4 3.0 4.5 1.5 versicolor
86 6.0 3.4 4.5 1.6 versicolor
87 6.7 3.1 4.7 1.5 versicolor
88 6.3 2.3 4.4 1.3 versicolor
89 5.6 3.0 4.1 1.3 versicolor
90 5.5 2.5 4.0 1.3 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
93 5.8 2.6 4.0 1.2 versicolor
94 5.0 2.3 3.3 1.0 versicolor
95 5.6 2.7 4.2 1.3 versicolor
96 5.7 3.0 4.2 1.2 versicolor
97 5.7 2.9 4.2 1.3 versicolor
98 6.2 2.9 4.3 1.3 versicolor
99 5.1 2.5 3.0 1.1 versicolor
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica
106 7.6 3.0 6.6 2.1 virginica
107 4.9 2.5 4.5 1.7 virginica
108 7.3 2.9 6.3 1.8 virginica
109 6.7 2.5 5.8 1.8 virginica
110 7.2 3.6 6.1 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
112 6.4 2.7 5.3 1.9 virginica
113 6.8 3.0 5.5 2.1 virginica
114 5.7 2.5 5.0 2.0 virginica
115 5.8 2.8 5.1 2.4 virginica
116 6.4 3.2 5.3 2.3 virginica
117 6.5 3.0 5.5 1.8 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
120 6.0 2.2 5.0 1.5 virginica
121 6.9 3.2 5.7 2.3 virginica
122 5.6 2.8 4.9 2.0 virginica
123 7.7 2.8 6.7 2.0 virginica
124 6.3 2.7 4.9 1.8 virginica
125 6.7 3.3 5.7 2.1 virginica
126 7.2 3.2 6.0 1.8 virginica
127 6.2 2.8 4.8 1.8 virginica
128 6.1 3.0 4.9 1.8 virginica
129 6.4 2.8 5.6 2.1 virginica
130 7.2 3.0 5.8 1.6 virginica
131 7.4 2.8 6.1 1.9 virginica
132 7.9 3.8 6.4 2.0 virginica
133 6.4 2.8 5.6 2.2 virginica
134 6.3 2.8 5.1 1.5 virginica
135 6.1 2.6 5.6 1.4 virginica
136 7.7 3.0 6.1 2.3 virginica
137 6.3 3.4 5.6 2.4 virginica
138 6.4 3.1 5.5 1.8 virginica
139 6.0 3.0 4.8 1.8 virginica
140 6.9 3.1 5.4 2.1 virginica
141 6.7 3.1 5.6 2.4 virginica
142 6.9 3.1 5.1 2.3 virginica
143 5.8 2.7 5.1 1.9 virginica
144 6.8 3.2 5.9 2.3 virginica
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
세팔은'꽃받침', 페탈은'꽃잎'을 뜻한다.분명히 앞의 4열은 꽃받침과 꽃잎의 특징이고 5열은 상응하는 분류를 대표한다.우리는 이 데이터 집합으로 베일스 훈련을 진행할 수 있다.
먼저 이 데이터 집합에 대한summary의 결과를 살펴보자.
> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
훈련 및 훈련 결과 보기:
> classifier<-naiveBayes(iris[,1:4], iris[,5])
> classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = iris[, 1:4], y = iris[, 5])
A-priori probabilities:
iris[, 5]
setosa versicolor virginica
0.3333333 0.3333333 0.3333333
Conditional probabilities:
Sepal.Length
iris[, 5] [,1] [,2]
setosa 5.006 0.3524897
versicolor 5.936 0.5161711
virginica 6.588 0.6358796
Sepal.Width
iris[, 5] [,1] [,2]
setosa 3.428 0.3790644
versicolor 2.770 0.3137983
virginica 2.974 0.3224966
Petal.Length
iris[, 5] [,1] [,2]
setosa 1.462 0.1736640
versicolor 4.260 0.4699110
virginica 5.552 0.5518947
Petal.Width
iris[, 5] [,1] [,2]
setosa 0.246 0.1053856
versicolor 1.326 0.1977527
virginica 2.026 0.2746501
> classifier$apriori
iris[, 5]
setosa versicolor virginica
50 50 50
> classifier$tables
$Sepal.Length
Sepal.Length
iris[, 5] [,1] [,2]
setosa 5.006 0.3524897
versicolor 5.936 0.5161711
virginica 6.588 0.6358796
$Sepal.Width
Sepal.Width
iris[, 5] [,1] [,2]
setosa 3.428 0.3790644
versicolor 2.770 0.3137983
virginica 2.974 0.3224966
$Petal.Length
Petal.Length
iris[, 5] [,1] [,2]
setosa 1.462 0.1736640
versicolor 4.260 0.4699110
virginica 5.552 0.5518947
$Petal.Width
Petal.Width
iris[, 5] [,1] [,2]
setosa 0.246 0.1053856
versicolor 1.326 0.1977527
virginica 2.026 0.2746501
classifier:
A-priori probabilities:
iris[, 5]
setosa versicolor virginica
0.3333333 0.3333333 0.3333333
잘 이해합니다. 바로 유형의 선험 확률입니다.다음을 수행합니다.
$Petal.Width
Petal.Width
iris[, 5] [,1] [,2]
setosa 0.246 0.1053856
versicolor 1.326 0.1977527
virginica 2.026 0.2746501
는 특징 Petal입니다.Width의 조건 확률은 이 베일스 실현에서 수치형 데이터(그리고 소수부분도 있음)가 특징이고 여기서 확률 밀도가 고스 분포에 부합된다고 가정한다.예를 들어 특징 Petal에 대해.Width는 setosa에 속하는 확률이 mean 0.246에 부합되고 표준 방차는 0.1053856의 고스 분포에 부합된다.예측:
아이리스 데이터 세트의 첫 번째 데이터 예측:
> predict(classifier, iris[1, -5])
[1] setosa
Levels: setosa versicolor virginica
iris[1,-5]는 첫 번째 행의 앞 4열을 나타냅니다.
이 분류기의 효과를 보십시오:
> table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual'))
actual
predicted setosa versicolor virginica
setosa 50 0 0
versicolor 0 47 3
virginica 0 3 47
분류 효과는 그래도 괜찮다.
새로운 데이터 구축 및 예측:
> new_data = data.frame(Sepal.Length=7, Sepal.Width=3, Petal.Length=6, Petal.Width=2)
> predict(classifier, new_data)
[1] virginica
Levels: setosa versicolor virginica
피쳐가 하나 적으면(세 피쳐만 있음)
> new_data = data.frame(Sepal.Length=7, Sepal.Width=3, Petal.Length=6)
> predict(classifier, new_data)
[1] virginica
Levels: setosa versicolor virginica
다음은 이 라이브러리에서 표식 특징을 어떻게 처리하는지 살펴보자. 데이터는 다음과 같다.
> model = c("H", "H", "H", "H", "T", "T", "T", "T")
> place = c("B", "B", "N", "N", "B", "B", "N", "N")
> repairs = c("Y", "N", "Y", "N", "Y", "N", "Y", "N")
> dataset = data.frame(model, place, repairs)
> dataset
model place repairs
1 H B Y
2 H B N
3 H N Y
4 H N N
5 T B Y
6 T B N
7 T N Y
8 T N N
베일스의:
> classifier<-naiveBayes(dataset[,1:2], dataset[,3])
> classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = dataset[, 1:2], y = dataset[, 3])
A-priori probabilities:
dataset[, 3]
N Y
0.5 0.5
Conditional probabilities:
model
dataset[, 3] H T
N 0.5 0.5
Y 0.5 0.5
place
dataset[, 3] B N
N 0.5 0.5
Y 0.5 0.5
자, 예측해 봅시다.
> new_data = data.frame(model="H", place="B")
> predict(classifier, new_data)
[1] N
Levels: N Y
perfect!
보충적으로 데이터가 부족한 경우
피쳐를 NA로 대체할 수 있습니다.
> model = c("H", "H", "H", "H", "T", "T", "T", "T")
> place = c("B", "B", "N", "N", "B", "B", NA, NA)
> repairs = c("Y", "N", "Y", "N", "Y", "N", "Y", "N")
> dataset = data.frame(model, place, repairs)
> dataset
model place repairs
1 H B Y
2 H B N
3 H N Y
4 H N N
5 T B Y
6 T B N
7 T <NA> Y
8 T <NA> N
> classifier<-naiveBayes(dataset[,1:2], dataset[,3])
> classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = dataset[, 1:2], y = dataset[, 3])
A-priori probabilities:
dataset[, 3]
N Y
0.5 0.5
Conditional probabilities:
model
dataset[, 3] H T
N 0.5 0.5
Y 0.5 0.5
place
dataset[, 3] B N
N 0.6666667 0.3333333
Y 0.6666667 0.3333333
참조:
http://www-users.cs.york.ac.uk/~jc/teaching/arin/R_practical/http://pythonhosted.org//NaiveBayes/
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
데이터 분석, 데이터 과학 및 기계 학습을 위한 데이터 이해 - 2부중앙값을 계산하려면 데이터를 정렬(오름차순 또는 내림차순은 중요하지 않음)한 다음 중간 지점을 찾습니다. [a] n이 짝수일 때 첫 번째 점=n2두 번째 점=n2+1 첫 번째~점 =\frac{n}{2} 두 번째~점 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.