python 은 RNN 을 사용 하여 텍스트 분 류 를 실현 합 니 다.

본 논문 의 사례 는 RNN 을 사용 하여 텍스트 분 류 를 하고 python 코드 가 실현 되 는 것 을 공유 하 였 으 며 구체 적 인 내용 은 다음 과 같다.
1.본 블 로그 프로젝트 의 유래 는 oxford 의 nlp 깊이 학습 과정 3 주차 숙제 이 고 작업 은 LSTM 를 사용 하여 텍스트 분 류 를 해 야 합 니 다.이전 CNN 텍스트 와 유사 하 게 분 류 된 이 코드 스타일 도 sklearn 스타일 을 모방 하여 3 단계 걷 기 형식(모델 실체 화,모델 훈련 과 모델 예측)이지 만 훈련 시간 이 오래 되 어 언제 훈련 하 는 것 이 이상 적 인지 모 르 기 때문에 다음 에 계속 훈련 하 는 기능 을 추가 했다.
2.구조 텍스트 분류의 rnn 클래스,(파일 을 ClassifierRNN.py 로 저장)
2.1 해당 설정 매개 변 수 는 비교적 번 거 롭 고 읽 기 에 불리 하기 때문에 tensor flow 소스 코드 형식 을 모방 하여 코드 를 네트워크 설정 매개 변수 N 로 나눈다.config 와 계산 설정 파라미터:calcconfig,대응 하 는 클래스:NNconfig,CALC_config。
2.2 ClassifierRNN 클래스 를 설명 합 니 다.이 클래스 의 주요 함 수 는 다음 과 같 습 니 다.(init,buildinputs, build_rnns, build_loss, build_optimizer, random_batches,fit, load_model, predict_정확도,predict),코드 는 다음 과 같 습 니 다.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
import time
class NN_config(object):
 def __init__(self,num_seqs=1000,num_steps=10,num_units=128,num_classes = 8,\
    num_layers = 1,embedding_size=100,vocab_size = 10000,\
    use_embeddings=False,embedding_init=None):
  self.num_seqs = num_seqs
  self.num_steps = num_steps
  self.num_units = num_units
  self.num_classes = num_classes
  self.num_layers = num_layers
  self.vocab_size = vocab_size
  self.embedding_size = embedding_size
  self.use_embeddings = use_embeddings
  self.embedding_init = embedding_init

class CALC_config(object):
 def __init__(self,batch_size=64,num_epoches = 20,learning_rate = 1.0e-3, \
     keep_prob=0.5,show_every_steps = 10,save_every_steps=100):
  self.batch_size  = batch_size
  self.num_epoches = num_epoches
  self.learning_rate = learning_rate
  self.keep_prob  = keep_prob
  self.show_every_steps = show_every_steps
  self.save_every_steps = save_every_steps

class ClassifierRNN(object):
 def __init__(self, nn_config, calc_config):
  # assign revalent parameters
  self.num_seqs = nn_config.num_seqs
  self.num_steps = nn_config.num_steps
  self.num_units = nn_config.num_units
  self.num_layers = nn_config.num_layers
  self.num_classes = nn_config.num_classes
  self.embedding_size = nn_config.embedding_size
  self.vocab_size  = nn_config.vocab_size
  self.use_embeddings = nn_config.use_embeddings
  self.embedding_init = nn_config.embedding_init
  # assign calc ravalant values
  self.batch_size  = calc_config.batch_size
  self.num_epoches = calc_config.num_epoches
  self.learning_rate = calc_config.learning_rate
  self.train_keep_prob= calc_config.keep_prob
  self.show_every_steps = calc_config.show_every_steps
  self.save_every_steps = calc_config.save_every_steps
  # create networks models
  tf.reset_default_graph()
  self.build_inputs()
  self.build_rnns()
  self.build_loss()
  self.build_optimizer()
  self.saver = tf.train.Saver()

 def build_inputs(self):
  with tf.name_scope('inputs'):
   self.inputs = tf.placeholder(tf.int32, shape=[None,self.num_seqs],\
                name='inputs')
   self.targets = tf.placeholder(tf.int32, shape=[None, self.num_classes],\
                name='classes')
   self.keep_prob = tf.placeholder(tf.float32,name='keep_prob')
   self.embedding_ph = tf.placeholder(tf.float32, name='embedding_ph')

   if self.use_embeddings == False:
    self.embeddings = tf.Variable(tf.random_uniform([self.vocab_size,\
        self.embedding_size],-0.1,0.1),name='embedding_flase') 
    self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs)
   else:
    embeddings = tf.Variable(tf.constant(0.0,shape=[self.vocab_size,self.embedding_size]),\
               trainable=False,name='embeddings_true')
    self.embeddings = embeddings.assign(self.embedding_ph)
    self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs)
    print('self.rnn_inputs.shape:',self.rnn_inputs.shape)

 def build_rnns(self):
  def get_a_cell(num_units,keep_prob):
   rnn_cell = tf.contrib.rnn.BasicLSTMCell(num_units=num_units)
   drop = tf.contrib.rnn.DropoutWrapper(rnn_cell, output_keep_prob=keep_prob)
   return drop
  with tf.name_scope('rnns'):
   self.cell = tf.contrib.rnn.MultiRNNCell([get_a_cell(self.num_units,self.keep_prob) for _ in range(self.num_layers)]) 
   self.initial_state = self.cell.zero_state(self.batch_size,tf.float32)
   self.outputs, self.final_state = tf.nn.dynamic_rnn(self.cell,tf.cast(self.rnn_inputs,tf.float32),\
    initial_state = self.initial_state )
   print('rnn_outputs',self.outputs.shape)

 def build_loss(self):
  with tf.name_scope('loss'):
   self.logits = tf.contrib.layers.fully_connected(inputs = tf.reduce_mean(self.outputs, axis=1), \
           num_outputs = self.num_classes, activation_fn = None)
   print('self.logits.shape:',self.logits.shape)
   self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits,\
          labels = self.targets))
   print('self.cost.shape',self.cost.shape)
   self.predictions = self.logits
   self.correct_predictions = tf.equal(tf.argmax(self.predictions, axis=1), tf.argmax(self.targets, axis=1))
   self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions,tf.float32))
   print(self.cost.shape)
   print(self.correct_predictions.shape)

 def build_optimizer(self):
  with tf.name_scope('optimizer'):
   self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.cost)

 def random_batches(self,data,shuffle=True):
  data = np.array(data)
  data_size = len(data)
  num_batches_per_epoch = int(data_size/self.batch_size)

  #del data
  for epoch in range(self.num_epoches):
   if shuffle :
    shuffle_index = np.random.permutation(np.arange(data_size))
    shuffled_data = data[shuffle_index]
   else:
    shuffled_data = data  
   for batch_num in range(num_batches_per_epoch):
    start = batch_num * self.batch_size
    end = min(start + self.batch_size,data_size)
    yield shuffled_data[start:end] 

 def fit(self,data,restart=False):
  if restart :
   self.load_model()
  else:
   self.session = tf.Session()
   self.session.run(tf.global_variables_initializer())
  with self.session as sess:   
   step = 0
   accuracy_list = []
   # model saving
   save_path = os.path.abspath(os.path.join(os.path.curdir, 'models'))     
   if not os.path.exists(save_path):
    os.makedirs(save_path)   
   plt.ion()
   #new_state = sess.run(self.initial_state)
   new_state = sess.run(self.initial_state)
   batches = self.random_batches(data)
   for batch in batches:
    x,y = zip(*batch)
    x = np.array(x)
    y = np.array(y)
    print(len(x),len(y),step)
    step += 1
    start = time.time()
    if self.use_embeddings == False:
     feed = {self.inputs :x,
      self.targets:y,
      self.keep_prob : self.train_keep_prob,
      self.initial_state: new_state}
    else:
     feed = {self.inputs :x,
      self.targets:y,
      self.keep_prob : self.train_keep_prob,
      self.initial_state: new_state,
      self.embedding_ph: self.embedding_init}    
    batch_loss, new_state, batch_accuracy , _ = sess.run([self.cost,self.final_state,\
               self.accuracy, self.optimizer],feed_dict = feed)
    end = time.time()
    accuracy_list.append(batch_accuracy)
    # control the print lines
    if step%self.show_every_steps == 0:
     print('steps/epoch:{}/{}...'.format(step,self.num_epoches),
      'loss:{:.4f}...'.format(batch_loss),
      '{:.4f} sec/batch'.format((end - start)),
      'batch_Accuracy:{:.4f}...'.format(batch_accuracy)
      )
     plt.plot(accuracy_list)
     plt.pause(0.5)
    if step%self.save_every_steps == 0:
     self.saver.save(sess,os.path.join(save_path, 'model') ,global_step = step)
   self.saver.save(sess, os.path.join(save_path, 'model'), global_step=step) 

 def load_model(self, start_path=None):
  if start_path == None:
   model_path = os.path.abspath(os.path.join(os.path.curdir,"models"))
   ckpt = tf.train.get_checkpoint_state(model_path)
   path = ckpt.model_checkpoint_path
   print("this is the start path of model:",path)
   self.session = tf.Session()
   self.saver.restore(self.session, path)
   print("Restored model parameters is complete!")

  else:
   self.session = tf.Session()
   self.saver.restore(self.session,start_path)
   print("Restored model parameters is complete!")

 def predict_accuracy(self,data,test=True):
  # loading_model
  self.load_model()
  sess = self.session
  iterations = 0
  accuracy_list = []
  predictions = []
  epoch_temp = self.num_epoches
  self.num_epoches = 1
  batches = self.random_batches(data,shuffle=False)
  for batch in batches:
   iterations += 1
   x_inputs, y_inputs = zip(*batch)
   x_inputs = np.array(x_inputs)
   y_inputs = np.array(y_inputs)
   if self.use_embeddings == False:
    feed = {self.inputs: x_inputs,
      self.targets: y_inputs,
      self.keep_prob: 1.0}   
   else:
    feed = {self.inputs: x_inputs,
      self.targets: y_inputs,
      self.keep_prob: 1.0,
      self.embedding_ph: self.embedding_init}   
   to_train = [self.cost, self.final_state, self.predictions,self.accuracy]
   batch_loss,new_state,batch_pred,batch_accuracy = sess.run(to_train, feed_dict = feed)
   accuracy_list.append(np.mean(batch_accuracy))
   predictions.append(batch_pred)
   print('The trainning step is {0}'.format(iterations),\
     'trainning_accuracy: {:.3f}'.format(accuracy_list[-1]))    

  accuracy = np.mean(accuracy_list)
  predictions = [list(pred) for pred in predictions]
  predictions = [p for pred in predictions for p in pred]
  predictions = np.array(predictions)
  self.num_epoches = epoch_temp
  if test :
   return predictions, accuracy
  else:
   return accuracy    

 def predict(self, data):
  # load_model
  self.load_model()
  sess = self.session
  iterations = 0
  predictionss = []
  epoch_temp = self.num_epoches
  self.num_epoches = 1
  batches = self.random_batches(data)
  for batch in batches:
   x_inputs = batch
   if self.use_embeddings == False:
    feed = {self.inputs : x_inputs,
      self.keep_prob:1.0}
   else:
    feed = {self.inputs : x_inputs,
      self.keep_prob:1.0,
      self.embedding_ph: self.embedding_init}  
   batch_pred = sess.run([self.predictions],feed_dict=feed)
   predictions.append(batch_pred)

  predictions = [list(pred) for pred in predictions]
  predictions = [p for pred in predictions for p in pred]
  predictions = np.array(predictions) 
  return predictions
3.모델 데이터 가 져 오기 및 처리 및 모델 훈련 을 실시 하여 하나의 처리 파일 에 집중(samplingtrainning.py)
해당 코드 는 다음 과 같 습 니 다.
ps:아래 문 서 는 glove 문 서 를 사용 합 니 다.이 문 서 는 인터넷 검색 을 통 해 해당 하 는 다운 로드 를 할 수 있 습 니 다.다운로드 후 glove 에 대응 하 는 생 성 형식 을 word2vec 에 대응 하 는 형식 으로 바 꿔 야 합 니 다.즉,파일 의 첫 번 째 단계 에 두 개의 정수(사전 의 수량 과 끼 워 넣 은 특징 길이)를 추가 하고 python 라 이브 러 리 자체 의 전환 도 구 를 사용 할 수 있 습 니 다.인터넷 에서 해당 하 는 사용 방법 을 검색 하면 된다.

import numpy as np
import os
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import re
import urllib.request
import zipfile
import lxml.etree
from collections import Counter
from random import shuffle
from gensim.models import KeyedVectors

# Download the dataset if it's not already there
if not os.path.isfile('ted_en-20160408.zip'):
 urllib.request.urlretrieve("https://wit3.fbk.eu/get.php?path=XML_releases/xml/ted_en-20160408.zip&filename=ted_en-20160408.zip", filename="ted_en-20160408.zip")

# extract both the texts and the labels from the xml file
with zipfile.ZipFile('ted_en-20160408.zip', 'r') as z:
 doc = lxml.etree.parse(z.open('ted_en-20160408.xml', 'r'))
texts = doc.xpath('//content/text()')
labels = doc.xpath('//head/keywords/text()')
del doc

print("There are {} input texts, each a long string with text and punctuation.".format(len(texts)))
print("")
print(texts[0][:100])

# method remove unused words and labels
inputs_text = [ re.sub(r'\([^)]*\)',' ', text) for text in texts]
inputs_text = [re.sub(r':', ' ', text) for text in inputs_text]
#inputs_text = [text.split() for text in inputs_text]
print(inputs_text[0][0:100])

inputs_text = [ text.lower() for text in texts]
inputs_text = [ re.sub(r'([^a-z0-9\s])', r' <\1_token> ',text) for text in inputs_text]
#input_texts = [re.sub(r'([^a-z0-9\s])', r' <\1_token> ', input_text) for input_text in input_texts]
inputs_text = [text.split() for text in inputs_text]
print(inputs_text[0][0:100])

# label procession
label_lookup = ['ooo','Too','oEo','ooD','TEo','ToD','oED','TED']
new_label = []
for i in range(len(labels)):
 labels_pre = ['o','o','o']
 label = labels[i].split(', ')
 #print(label,i)
 if 'technology' in label:
  labels_pre[0] = 'T'
 if 'entertainment' in label:
  labels_pre[1] = 'E'
 if 'design' in label:
  labels_pre[2] = 'D'
 labels_temp = ''.join(labels_pre)
 label_index = label_lookup.index(labels_temp)
 new_label.append(label_index)

print('the length of labels:{0}'.format(len(new_label)))
print(new_label[0:50])
labels_index = np.zeros((len(new_label),8))
#for i in range(labels_index.shape[0]):
# labels_index[i,new_label[i]] = 1
labels_index[range(len(new_label)),new_label] = 1.0
print(labels_index[0:10])

# feature selections
unions = list(zip(inputs_text,labels_index))
unions = [union for union in unions if len(union[0]) >300]
print(len(unions))
inputs_text, labels_index = zip(*unions)
inputs_text = list(inputs_text)
labels = list(labels_index)
print(inputs_text[0][0:50])
print(labels_index[0:10])

# feature filttering

all_context = [word for text in inputs_text for word in text]
print('the present datas word is :{0}'.format(len(all_context)))
words_count = Counter(all_context)
most_words = [word for word, count in words_count.most_common(50)]
once_words = [word for word, count in words_count.most_common() if count == 1]
print('there {0} words only once to be removed'.format(len(once_words)))
print(most_words)
#print(once_words)
remove_words = set(most_words + once_words)
#print(remove_words)

inputs_new = [[word for word in text if word not in remove_words] for text in inputs_text]
new_all_counts =[word for text in inputs_new for word in text]
print('there new all context length is:{0}'.format(len(new_all_counts)))

# word2index and index2word processings
words_voca = set([word for text in inputs_new for word in text])
word2index = {}
index2word = {}
for i, word in enumerate(words_voca):
 word2index[word] = i
 index2word[i] = word
inputs_index = []
for text in inputs_new:
 inputs_index.append([word2index[word] for word in text])
print(len(inputs_index))
print(inputs_index[0][0:100])

model_glove = KeyedVectors.load_word2vec_format('glove.6B.300d.txt', binary=False)

n_features = 300
embeddings = np.random.uniform(-0.1,0.1,(len(word2index),n_features))
inwords = 0
for word in words_voca:
 if word in model_glove.vocab:
  inwords += 1
  embeddings[word2index[word]] = model_glove[word]
print('there {} words in model_glove'.format(inwords))
print('The voca_word in presents text is:{0}'.format(len(words_voca)))
print('the precentage of words in glove is:{0}'.format(np.float(inwords)/len(words_voca)))

# truncate the sequence length
max_length = 1000
inputs_concat = []
for text in inputs_index:
 if len(text)>max_length:
  inputs_concat.append(text[0:max_length])
 else:
  inputs_concat.append(text + [0]*(max_length-len(text)))
print(len(inputs_concat))
inputs_index = inputs_concat
print(len(inputs_index))

# sampling the train data use category sampling
num_class = 8
label_unions = list(zip(inputs_index,labels_index))
print(len(label_unions))
trains = []
devs = []
tests = []
for c in range(num_class):
 type_sample = [union for union in label_unions if np.argmax(union[1]) == c]
 print('the length of this type length',len(type_sample),c)
 shuffle(type_sample)
 num_all = len(type_sample)
 num_train = int(num_all*0.8)
 num_dev = int(num_all*0.9)
 trains.extend(type_sample[0:num_train])
 devs.extend(type_sample[num_train:num_dev])
 tests.extend(type_sample[num_dev:num_all])
shuffle(trains)
shuffle(devs)
shuffle(tests)
print('the length of trains is:{0}'.format(len(trains)))
print('the length of devs is:{0}'.format(len(devs)))
print('the length of tests is:{0}'.format(len(tests)))


#--------------------------------------------------------------------
#------------------------ model processing --------------------------
#--------------------------------------------------------------------
from ClassifierRNN import NN_config,CALC_config,ClassifierRNN

# parameters used by rnns
num_layers = 1
num_units = 60
num_seqs = 1000
step_length = 10
num_steps = int(num_seqs/step_length)
embedding_size = 300
num_classes = 8
n_words = len(words_voca)

# parameters used by trainning models
batch_size = 64
num_epoch = 100
learning_rate = 0.0075
show_every_epoch = 10


nn_config = NN_config(num_seqs =num_seqs,\
      num_steps = num_steps,\
      num_units = num_units,\
     num_classes = num_classes,\
      num_layers = num_layers,\
      vocab_size = n_words,\
      embedding_size = embedding_size,\
      use_embeddings = False,\
      embedding_init = embeddings)
calc_config = CALC_config(batch_size = batch_size,\
       num_epoches = num_epoch,\
       learning_rate = learning_rate,\
       show_every_steps = 10,\
       save_every_steps = 100)

print("this is checking of nn_config:\\
", "out of num_seqs:{}
".format(nn_config.num_seqs), "out of num_steps:{}
".format(nn_config.num_steps), "out of num_units:{}
".format(nn_config.num_units), "out of num_classes:{}
".format(nn_config.num_classes), "out of num_layers:{}
".format(nn_config.num_layers), "out of vocab_size:{}
".format(nn_config.vocab_size), "out of embedding_size:{}
".format(nn_config.embedding_size), "out of use_embeddings:{}
".format(nn_config.use_embeddings)) print("this is checing of calc_config: \\
", "out of batch_size {}
".format(calc_config.batch_size), "out of num_epoches {}
".format(calc_config.num_epoches), "out of learning_rate {}
".format(calc_config.learning_rate), "out of keep_prob {}
".format(calc_config.keep_prob), "out of show_every_steps {}
".format(calc_config.show_every_steps), "out of save_every_steps {}
".format(calc_config.save_every_steps)) rnn_model = ClassifierRNN(nn_config,calc_config) rnn_model.fit(trains,restart=False) accuracy = rnn_model.predict_accuracy(devs,test=False) print("Final accuracy of devs is {}".format(accuracy)) test_accuracy = rnn_model.predict_accuracy(tests,test=False) print("The final accuracy of tests is :{}".format(test_accuracy))
4.모델 평 가 는 이번 사례 에서 모델 데이터 가 비교적 적 고 모두 2000 여 개의 견본 이 있 으 며 상대 적 으로 적 기 때문에 적합 한 상태 가 나타 날 수 밖 에 없다.rnn 은 trains 샘플 을 훈련 할 때 정확 율 은 1.0 에 가 깝 지만 devs 와 tests 집합 검증 을 할 때 정확 율 은 6.0 정도 이 고 l2 를 적당 하 게 증가 할 수 있 으 나 본 사례 의 고려 범위 에 있 지 않다.이 모델 을 IMDB 산 례 계산 에 사 용 했 을 때 2 천 500 개 견본 에 해당 할 때의 정확 도 는 89.0%정 도 였 다.

이상 이 바로 본 고의 모든 내용 입 니 다.여러분 의 학습 에 도움 이 되 고 저 희 를 많이 응원 해 주 셨 으 면 좋 겠 습 니 다.

좋은 웹페이지 즐겨찾기