Pytorch 이미지 변환 함수 집합 소결
PyTorch 의 Vision 모듈 은 이미지 변환 의 많은 함 수 를 제공 합 니 다.
torchvision/transforms/functional.py
from __future__ import division
import torch
import sys
import math
from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
try:
import accimage
except ImportError:
accimage = None
import numpy as np
import numbers
import collections
import warnings
import matplotlib as plt
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
다음 그림 은 다음 과 같다.
img_file = "test.jpe"
img = Image.open(img_file)
width, height = img.size #(750, 815)
img.show()
2.PyTorch 이미지 변환 함수
2.1 이미지 데이터 형식 판단
# , ,pil, tensor, numpy
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
# example:
_is_pil_image(img)
# True
_is_tensor_image(img)
# False
_is_numpy_image(img)
# False
_is_numpy_image(np.array(img))
# True
2.2 to_tensor(pic)PIL Image
또는 nupy.ndarray
을 tensor
으로 전환 합 니 다.
def to_tensor(pic):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if not(_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
elif pic.mode == 'F':
img = torch.from_numpy(np.array(pic, np.float32, copy=False))
elif pic.mode == '1':
img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
2.3 to_pil_image(pic, mode=None)tensor
또는 ndarray
을 PIL Image
으로 전환 합 니 다.
def to_pil_image(pic, mode=None):
"""
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
.. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
Returns:
PIL Image: Image converted to PIL Image.
"""
if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))
elif isinstance(pic, torch.Tensor):
if pic.ndimension() not in {2, 3}:
raise ValueError('pic should be 2/3 dimensional. Got {} '\
'dimensions.'.format(pic.ndimension()))
elif pic.ndimension() == 2:
# if 2D image, add channel dimension (CHW)
pic.unsqueeze_(0)
elif isinstance(pic, np.ndarray):
if pic.ndim not in {2, 3}:
raise ValueError('pic should be 2/3 dimensional. Got {} '\
'dimensions.'.format(pic.ndim))
elif pic.ndim == 2:
# if 2D image, add channel dimension (HWC)
pic = np.expand_dims(pic, 2)
npimg = pic
if isinstance(pic, torch.FloatTensor):
pic = pic.mul(255).byte()
if isinstance(pic, torch.Tensor):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
if not isinstance(npimg, np.ndarray):
raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
'not {}'.format(type(npimg)))
if npimg.shape[2] == 1:
expected_mode = None
npimg = npimg[:, :, 0]
if npimg.dtype == np.uint8:
expected_mode = 'L'
elif npimg.dtype == np.int16:
expected_mode = 'I;16'
elif npimg.dtype == np.int32:
expected_mode = 'I'
elif npimg.dtype == np.float32:
expected_mode = 'F'
if mode is not None and mode != expected_mode:
raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
.format(mode, np.dtype, expected_mode))
mode = expected_mode
elif npimg.shape[2] == 4:
permitted_4_channel_modes = ['RGBA', 'CMYK']
if mode is not None and mode not in permitted_4_channel_modes:
raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGBA'
else:
permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
if mode is not None and mode not in permitted_3_channel_modes:
raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGB'
if mode is None:
raise TypeError('Input type {} is not supported'.format(npimg.dtype))
return Image.fromarray(npimg, mode=mode)
2.4 normalize(tensor, mean, std)귀 일화
tensor
의 이미지.in-place
계산.
def normalize(tensor, mean, std):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# This is faster than using broadcasting, don't change without benchmarking
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
# example
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img_normalize = normalize(img_tensor, mean, std)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(to_pil_image(img_normalize))
ax2.axis("off")
ax2.set_title("normalize img")
plt.show()
2.5 resize(img, size, interpolation=Image.BILINEAR)
입력 한 PIL Image 를 주어진 크기 로 resize 합 니 다.
매개 변수 size 는 조 정 된 사이즈 입 니 다.
size 가 배열(h,w)이 라면 이(h,w)크기 로 직접 조정 합 니 다.
size 가 int 값 이 라면 조 정 된 그림 의 가장 짧 은 변 은 이 값 이 고 고정된 길이 와 폭 을 유지 합 니 다.
def resize(img, size, interpolation=Image.BILINEAR):
"""
Args:
img (PIL Image): Image to be resized.
size (sequence or int): Desired output size.
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
Returns:
PIL Image: Resized image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
# example:
img_resize_256x256 = resize(img, (256, 256)) # (256, 256)
img_resize_256 = resize(img, 256) # (256, 278)
# vis
ax1 = plt.subplot(1, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 3, 2)
ax2.imshow(img_resize_256x256)
ax2.axis("off")
ax2.set_title("resize_256x256 img")
ax3 = plt.subplot(1, 3, 3)
ax3.imshow(img_resize_256)
ax3.axis("off")
ax3.set_title("resize_256 img")
plt.show()
2.6 pad(img, padding, fill=0, padding_mode=‘constant')
지정 한
padding
모드 와 충전 값 에 따라 주어진 PIL Image
의 모든 변 을 pad
으로 처리 합 니 다.파라미터 padding-int 또는 tuple 형식.
padding:
padding_mode='constant'
인 경우 에 만 사 용 됩 니 다.파라미터 paddingmode-채 울 유형,선택 가능:constant,edge,reflect,symmetric.기본 값 은 constant 입 니 다.상수 치 를 채 웁 니 다.
constant-padding 충전 상수 치 fill.
edge-padding 그림 가장자리 의 마지막 값.
reflect-padding 이미지 의 반사(reflection)값,(그림 가장자리 의 마지막 픽 셀 값 을 반복 하지 않 음)
예 를 들 어[1,2,3,4]reflect 모드 에서 양쪽 padding 2 개의 요소 값 을 얻 을 수 있 습 니 다.
[3, 2, 1, 2, 3, 4, 3, 2]
symmetric-padding 이미지 의 반사(reflection)값(그림 가장자리 의 마지막 픽 셀 값 을 반복 합 니 다).
예 를 들 어[1,2,3,4]symmetric 모드 에서 양쪽 padding 2 개의 요소 값 을 얻 을 수 있 습 니 다.
[2, 1, 1, 2, 3, 4, 4, 3]
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Args:
img (PIL Image): Image to be padded.
padding (int or tuple): Padding on each border.
fill: Pixel fill value for constant fill. Default is 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric.
Default is constant.
Returns:
PIL Image: Padded image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not isinstance(padding, (numbers.Number, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if padding_mode == 'constant':
if img.mode == 'P':
palette = img.getpalette()
image = ImageOps.expand(img, border=padding, fill=fill)
image.putpalette(palette)
return image
return ImageOps.expand(img, border=padding, fill=fill)
else:
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if img.mode == 'P':
palette = img.getpalette()
img = np.asarray(img)
img = np.pad(img,
((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
img = Image.fromarray(img)
img.putpalette(palette)
return img
img = np.asarray(img)
# RGB image
if len(img.shape) == 3:
img = np.pad(img,
((pad_top, pad_bottom),
(pad_left, pad_right),
(0, 0)),
padding_mode)
# Grayscale image
if len(img.shape) == 2:
img = np.pad(img,
((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
return Image.fromarray(img)
# example:
img_padding = pad(img, (10, 20, 30 ,40), fill=128) # (750, 815) -> (790, 875)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_padding)
ax2.axis("off")
ax2.set_title("padding img")
plt.show()
2.7 crop(img, i, j, h, w)
주어진 PIL 이미 지 를 재단 합 니 다.
def crop(img, i, j, h, w):
"""
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
Returns:
PIL Image: Cropped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.crop((j, i, j + w, i + h))
# example
img_crop = crop(img, 100, 100, 500, 500) # (750, 815) -> (500, 500)
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_crop)
ax2.axis("off")
ax2.set_title("crop img")
plt.show()
2.8 center_crop(img, output_size)
def center_crop(img, output_size):
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
w, h = img.size
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
return crop(img, i, j, th, tw)
#example
img_centercrop = center_crop(img, (256, 256)) # (750, 815) -> (256, 256)
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_centercrop)
ax2.axis("off")
ax2.set_title("centercrop img")
plt.show()
2.9 resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR)주어진 PIL Image 를 재단 하고 특정 사이즈 로 크기 를 조정 합 니 다.
def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
"""
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size. Same semantics as ``resize``.
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``.
Returns:
PIL Image: Cropped image.
"""
assert _is_pil_image(img), 'img should be PIL Image'
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation)
return img
# example
img_resizedcrop = resized_crop(img, 100, 100, 500, 500, (256, 256)) # (750, 815) -> (500, 500) -> (256, 256)
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_resizedcrop)
ax2.axis("off")
ax2.set_title("resizedcrop img")
plt.show()
2.10 hflip(img)
수평 반전(Horizontally flip)이 지정 한 PIL 이미지 입 니 다.
def hflip(img):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Horizontall flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.transpose(Image.FLIP_LEFT_RIGHT)
2.11 vflip(img)수직 반전(Vertically flip)이 지정 한 PIL 이미지 입 니 다.
def vflip(img):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Vertically flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.transpose(Image.FLIP_TOP_BOTTOM)
# example:
img_hflip = hflip(img)
img_vflip = vflip(img)
ax1 = plt.subplot(1, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 3, 2)
ax2.imshow(img_hflip)
ax2.axis("off")
ax2.set_title("hflip img")
ax3 = plt.subplot(1, 3, 3)
ax3.imshow(img_vflip)
ax3.axis("off")
ax3.set_title("vflip img")
plt.show()
2.12 five_crop(img, size)
Crop the given PIL Image into four corners and the central crop.
PIL Image 의 네 개의 뿔 과 중간 에 다섯 개의 그림 을 자 릅 니 다.
def five_crop(img, size):
"""
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
Returns:
tuple: tuple (tl, tr, bl, br, center)
Corresponding top left, top right, bottom left,
bottom right and center crop.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
w, h = img.size
crop_h, crop_w = size
if crop_w > w or crop_h > h:
raise ValueError("Requested crop size {} is bigger than input size {}".format(size,
(h, w)))
tl = img.crop((0, 0, crop_w, crop_h))
tr = img.crop((w - crop_w, 0, w, crop_h))
bl = img.crop((0, h - crop_h, crop_w, h))
br = img.crop((w - crop_w, h - crop_h, w, h))
center = center_crop(img, (crop_h, crop_w))
return (tl, tr, bl, br, center)
# example:
img_tl, img_tr, img_bl, img_br, img_center = five_crop(img, (400, 400))
ax1 = plt.subplot(2, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(2, 3, 2)
ax2.imshow(img_tl)
ax2.axis("off")
ax2.set_title("tl img")
ax3 = plt.subplot(2, 3, 3)
ax3.imshow(img_tr)
ax3.axis("off")
ax3.set_title("tr img")
ax4 = plt.subplot(2, 3, 4)
ax4.imshow(img_bl)
ax4.axis("off")
ax4.set_title("bl img")
ax5 = plt.subplot(2, 3, 5)
ax5.imshow(img_br)
ax5.axis("off")
ax5.set_title("br img")
ax6 = plt.subplot(2, 3, 6)
ax6.imshow(img_center)
ax6.axis("off")
ax6.set_title("center img")
plt.show()
2.13 ten_crop(img, size, vertical_flip=False)
PIL Image 에서 자 른 네 개의 각과 중간 부분의 다섯 개의 하위 그림 을 하위 그림 마다 뒤 집 습 니 다.기본 값 은 수평 으로 뒤 집 습 니 다.
def ten_crop(img, size, vertical_flip=False):
"""
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip (bool): Use vertical flipping instead of horizontal
Returns:
tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
Corresponding top left, top right, bottom left, bottom right and center crop
and same for the flipped image.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
first_five = five_crop(img, size)
if vertical_flip:
img = vflip(img)
else:
img = hflip(img)
second_five = five_crop(img, size)
return first_five + second_five
2.14 adjust_brightness(img, brightness_factor)
def adjust_brightness(img, brightness_factor):
"""
Args:
img (PIL Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness.
Can be any non negative number.
0 gives a black image,
1 gives the original image,
2 increases the brightness by a factor of 2.
Returns:
PIL Image: Brightness adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
# example:
img_adjust_brightness = adjust_brightness(img, 2.5)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_brightness)
ax2.axis("off")
ax2.set_title("adjust_brightness img")
plt.show()
2.15 adjust_contrast(img, contrast_factor)
대비 도 를 조절 하 다.
def adjust_contrast(img, contrast_factor):
"""
Args:
img (PIL Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast.
Can be any non negative number.
0 gives a solid gray image,
1 gives the original image,
2 increases the contrast by a factor of 2.
Returns:
PIL Image: Contrast adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
# example:
img_adjust_contrast = adjust_contrast(img, 2.5)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_contrast)
ax2.axis("off")
ax2.set_title("adjust_contrast img")
plt.show()
2.16 adjust_saturation(img, saturation_factor)
색상 포화 도 조절.
def adjust_saturation(img, saturation_factor):
"""
Args:
img (PIL Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation.
0 will give a black and white image,
1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL Image: Saturation adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
# example
img_adjust_saturation = adjust_saturation(img, 2.5)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_saturation)
ax2.axis("off")
ax2.set_title("adjust_saturation img")
plt.show()
2.17 adjust_hue(img, hue_factor)
그림%1 개의 캡 션 을 편 집 했 습 니 다.
그림 을 HSV 공간 으로 변환 하고 주기 적 으로 hue 채널(H)의 강 도 를 이동 하여 이미지 hue 의 조정 을 실현 합 니 다.
마지막 으로 결 과 를 원본 이미지 모드 로 변환 합 니 다.매개 변수 huefactor-H 채널 이 이동 하 는 인자,그 값 은 구간[-0.5,0.5]에 있어 야 합 니 다.
def adjust_hue(img, hue_factor):
"""
Args:
img (PIL Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel.
Should be in [-0.5, 0.5].
0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift.
Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL Image: Hue adjusted image.
"""
if not(-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
# example:
img_adjust_hue = adjust_hue(img, 0.5)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_hue)
ax2.axis("off")
ax2.set_title("adjust_hue img")
plt.show()
2.18 adjust_gamma(img, gamma, gain=1)
그림 을 감마 보 정(gamma correction)합 니 다.Power Law Transform 이 라 고도 합 니 다.
def adjust_gamma(img, gamma, gain=1):
"""
Args:
img (PIL Image): PIL Image to be adjusted.
gamma (float): Non negative real number, \gamma .
gamma larger than 1 make the shadows darker,
while gamma smaller than 1 make dark regions lighter.
gain (float): The constant multiplier.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
input_mode = img.mode
img = img.convert('RGB')
gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
img = img.point(gamma_map) # use PIL's point-function to accelerate this part
img = img.convert(input_mode)
return img
# example:
img_adjust_gamma = adjust_gamma(img, 0.5)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_gamma)
ax2.axis("off")
ax2.set_title("adjust_gamma img")
plt.show()
2.19 rotate(img, angle, resample=False, expand=False, center=None)
그림 을 회전 합 니 다.
파라미터
resample
선택 값:PIL.Image.NEAREST,PIL.Image.BiINEAR,PIL.Image.BiCUBIC.인자
resample
이 무시 되 거나 그림 의 모드 가 1 또는 P 이면 resample=PIL.Image.NEAREST.파라미터
expand
만약 expand=True 라면,회전 후의 모든 그림 을 포함 할 수 있 도록 출력 그림 을 확장 합 니 다.expand=False 또는 무시 되면 출력 그림 과 입력 그림 의 크기 가 일치 합 니 다.
expand 는 회전 이 중심 으로 회전 하고 이동 하지 않 는 다 고 가정 합 니 다.
def rotate(img, angle, resample=False, expand=False, center=None):
"""
Args:
img (PIL Image): PIL Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or
``PIL.Image.BICUBIC``, optional):
expand (bool, optional): Optional expansion flag.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.rotate(angle, resample, expand, center)
# example:
img_rotate = rotate(img, 60)
# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_rotate)
ax2.axis("off")
ax2.set_title("rotate img")
plt.show()
2.20 affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)
이미지 중심 이 변 하지 않 고 모방 변환 을 진행 합 니 다.
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
# Helper method to compute inverse matrix for affine transformation
# As it is explained in PIL.Image.rotate
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# RSS(a, scale, shear) = [ cos(a)*scale -sin(a + shear)*scale 0]
# [ sin(a)*scale cos(a + shear)*scale 0]
# [ 0 0 1]
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
angle = math.radians(angle)
shear = math.radians(shear)
scale = 1.0 / scale
# Inverted rotation matrix with scale and shear
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
matrix = [
math.cos(angle + shear), math.sin(angle + shear), 0,
-math.sin(angle), math.cos(angle), 0
]
matrix = [scale / d * m for m in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += center[0]
matrix[5] += center[1]
return matrix
def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
"""
Args:
img (PIL Image): PIL Image to be rotated.
angle (float or int): rotation angle in degrees between -180 and 180,
clockwise direction.
translate (list or tuple of integers): horizontal and vertical translations
(post-rotation translation)
scale (float): overall scale
shear (float): shear angle value in degrees between -180 to 180,
clockwise direction.
resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or
``PIL.Image.BICUBIC``, optional):
fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"Argument translate should be a list or tuple of length 2"
assert scale > 0.0, "Argument scale should be positive"
output_size = img.size
center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
kwargs = {"fillcolor": fillcolor} if PILLOW_VERSION[0] == '5' else {}
return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
2.21 to_grayscale(img, num_output_channels=1)그림 을 그 레이스 케 일 로 변환 합 니 다.
def to_grayscale(img, num_output_channels=1):
"""
Args:
img (PIL Image): Image to be converted to grayscale.
Returns:
PIL Image: Grayscale version of the image.
if num_output_channels = 1 :
returned image is single channel
if num_output_channels = 3 :
returned image is 3 channel with r = g = b
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if num_output_channels == 1:
img = img.convert('L')
elif num_output_channels == 3:
img = img.convert('L')
np_img = np.array(img, dtype=np.uint8)
np_img = np.dstack([np_img, np_img, np_img])
img = Image.fromarray(np_img, 'RGB')
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
참조 링크
https://www.aiuai.cn/aifarm759.html
Pytorch 이미지 변환 함수 집합 소결 에 관 한 이 글 은 여기까지 소개 되 었 습 니 다.더 많은 Pytorch 이미지 변환 함수 내용 은 우리 의 이전 글 을 검색 하거나 아래 의 관련 글 을 계속 조회 하 시기 바 랍 니 다.앞으로 많은 응원 바 랍 니 다!
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
Pytorch에서 shuffle을 사용하여 데이터를 흐트러뜨리는 작업우선 내가 너에게 한 가지 알려줘야 할 것은 바로pytorch의tensor이다. 만약에random을 직접 사용한다면.shuffle는 데이터를 흐트러뜨리거나 아래의 방식을 사용하여 직접 쓰기를 정의합니다. 그러면 혼란...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.