poj 2420 A Star not a Tree?(시뮬레이션 퇴화 구비 마점)
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 2519
Accepted: 1332
Description
Luke wants to upgrade his home computer network from 10mbs to 100mbs. His existing network uses 10base2 (coaxial) cables that allow you to connect any number of computers together in a linear arrangement. Luke is particulary proud that he solved a nasty NP-complete problem in order to minimize the total cable length.
Unfortunately, Luke cannot use his existing cabling. The 100mbs system uses 100baseT (twisted pair) cables. Each 100baseT cable connects only two devices: either two network cards or a network card and a hub. (A hub is an electronic device that interconnects several cables.) Luke has a choice: He can buy 2N-2 network cards and connect his N computers together by inserting one or more cards into each computer and connecting them all together. Or he can buy N network cards and a hub and connect each of his N computers to the hub. The first approach would require that Luke configure his operating system to forward network traffic. However, with the installation of Winux 2007.2, Luke discovered that network forwarding no longer worked. He couldn't figure out how to re-enable forwarding, and he had never heard of Prim or Kruskal, so he settled on the second approach: N network cards and a hub.
Luke lives in a loft and so is prepared to run the cables and place the hub anywhere. But he won't move his computers. He wants to minimize the total length of cable he must buy.
Input
The first line of input contains a positive integer N <= 100, the number of computers. N lines follow; each gives the (x,y) coordinates (in mm.) of a computer within the room. All coordinates are integers between 0 and 10,000.
Output
Output consists of one number, the total length of the cable segments, rounded to the nearest mm.
Sample Input
4
0 0
0 10000
10000 10000
10000 0
Sample Output 28284
Source Waterloo Local 2002.01.26
제목:http://poj.org/problem?id=2420
제목: n점을 주고 점 P를 구하세요. 이 점에서 다른 점까지의 거리의 합이 가장 짧습니다.말 좀 써달라고.
분석: 페마점은 아날로그 퇴화로 구할 수 있다. 이 문제는 데이터가 약해서 아무렇게나 지낼 수 있다.
PS: 저는 항상 페마점이 가장 작은 원에 포함된 원심인 줄 알았어요. 그리고 곤란했어요. 아무리 조정해도 지나갈 수가 없어요. 다른 사람의 코드를 봐도 몰라요. 써보고 갑자기 깨달았어요. T_T
코드:
#include<cmath>
#include<cstdio>
#include<iostream>
using namespace std;
const int mm=111;
const double eps=1e-8;
int dx[]={0,0,-1,1};
int dy[]={-1,1,0,0};
typedef double diy;
struct point
{
diy x,y;
point(){}
point(diy _x,diy _y):x(_x),y(_y){}
}g[mm];
double Dis(point P,point Q)
{
return sqrt((P.x-Q.x)*(P.x-Q.x)+(P.y-Q.y)*(P.y-Q.y));
}
double GetAll(point *g,point o,int n)
{
double ret=0;
while(n--)ret+=Dis(g[n],o);
return ret;
}
double SimulatedAnnealing(point *g,int n)
{
point o=g[0],p;
double t,tmp,ret=1e99;
int i,flag;
for(t=100;t>eps;t*=0.98)
{
flag=1;
while(flag)
{
flag=0;
for(i=0;i<4;++i)
{
p.x=o.x+dx[i]*t;
p.y=o.y+dy[i]*t;
if(ret>GetAll(g,p,n))
{
ret=GetAll(g,p,n);
o=p;
flag=1;
}
}
}
}
return ret;
}
int main()
{
int i,n;
while(~scanf("%d",&n))
{
for(i=0;i<n;++i)
scanf("%lf%lf",&g[i].x,&g[i].y);
printf("%.0lf
",SimulatedAnnealing(g,n));
}
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
cocos2d Lua 학습(一)ios에서 루아 함수 호출 및 전참 방법 lua 코드: 출력 결과: lua 호출 C++ 방법: add 함수: lua 코드: 출력 결과: 함수를 호출합니다. 함수를 호출하려면 다음 협의를 따르십시오. 우선, 호출할 함...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.