Fibonacci with ADA and others (Part 2/3)
Some points about the design. Firstly the structure of the number is more clear to see here. As is said in the previous post, components of the number are represented by cells of the array. However, in regards to the maximum magnitude each component holds, there are two choices, one is make full use of the whole 32-digit integer, which is the most efficient in terms of memory utilization; and the other is use it to represent a largest multiple of ten it can take, which in this case, for a 32-digit integer type is 10^9. The benefit of the latter is the ease of print as a decimal number.
The current source code implements the second approach, where it declares that maximum value for each component as a constant in the package declaration. The constants are useful for the logic to determine in each step of the calculation of an operation whether a particular component has exceeded the maximum value so a bring-down and a carry to the component ahead is needed.
As the big integer to deal with there is signed integer, the sign of the number is carried by the highest component, and the design specifies that a valid big integer object should not have signs on components other than the highest (this makes the highest component the only one that needs to be flipped in a absolute/negative value operation). An alternative approach might use a separate field to store the sign, but it's not necessary and optimal for this design, as component is not fully utilized even as an signed integer.
Operations like add and subtract on big integers are implemented based on add and subtract on their corresponding absolute numbers; since ADA doesn't allow in any way changing the values of the parameters passed to a function (they are always 'in' parameters), so copies of these input parameters as local variables are always needed as long as changes to these numbers are needed in the course of the calculation. If more efficiency is required, one probably needs to consider using a dynamic internal array or data structure alike instead.
Note there is a method named 'compact' that takes in a big integer object and returns an object representing the same big integer number but having an internal array no greater in length than needed.
with ada.Unchecked_Deallocation;
with ada.Strings.fixed;
use ada.Strings;
use ada.Strings.fixed;
package body ariane.numerics.biginteger is
subtype cmpres_t is integer range -1..1;
subtype sign_t is integer range -1..1;
-- underlying deallocation method
-- note: seems it has to be declared after the object definition and
-- invoked by a public wrapper method, as the deallocation method
-- needs information of the object type
procedure deallocate is new ada.Unchecked_Deallocation(Object=>object,
Name=>objectptr);
-- get the maximum of two instances of length_t type
function max(a, b : length_t) return length_t is
begin
if a > b then
return a;
else
return b;
end if;
end max;
-- get the minimum of two instances of length_t type
function min(a, b : length_t) return length_t is
begin
if a > b then
return b;
else
return a;
end if;
end min;
-- compacts a given number so that its effective length is the same as
-- the same as its array length
function compact(o : object) return object is
res : object(o.actln);
begin
for i in 1 .. o.actln loop
res.cells(i) := o.cells(i);
end loop;
res.actln := o.actln;
return res;
end;
-- returns the sign of the given value
function getsgn(o : object) return sign_t is
begin
if o.cells(o.actln) > 0 then
return 1;
elsif o.cells(o.actln) < 0 then
return -1;
else
return 0;
end if;
end getsgn;
-- returns the absolute value of the big integer object
function getabs(o : object) return object is
res : object := o;
begin
if res.cells(res.actln) < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
return res;
end getabs;
-- compares the absolute values of the two operands of length_t type
-- ensure the two numbers are non-negative
function cmpasabs(lhs, rhs : object) return cmpres_t is
begin
if lhs.actln < rhs.actln then
return -1;
elsif lhs.actln > rhs.actln then
return 1;
end if;
for i in reverse 1 .. lhs.actln loop
if lhs.cells(i) < rhs.cells(i) then
return -1;
elsif lhs.cells(i) > rhs.cells(i) then
return 1;
end if;
end loop;
return 0;
end cmpasabs;
-- adds two numbers; ensure the two numbers are non-negative
-- the return value is neither made definite nor compacted
procedure addasabs(lhs, rhs : object; res : out object) is
maxn : length_t := max(lhs.actln, rhs.actln);
minn : length_t := min(lhs.actln, rhs.actln);
tmp : integer;
carry : integer := 0;
procedure handlehighdigits(highref : cells_t) is begin
for i in minn + 1 .. maxn loop
tmp := highref(i) + carry;
if tmp > maxcellval then
tmp := tmp - maxmulten;
carry := 1;
end if;
res.cells(i) := tmp;
end loop;
if carry > 0 then
res.cells(maxn + 1) := carry;
res.actln := maxn + 1;
else
res.actln := maxn;
end if;
end handlehighdigits;
begin
for i in 1 .. minn loop
tmp := lhs.cells(i) + rhs.cells(i) + carry;
if tmp > maxcellval then
tmp := tmp - maxmulten;
carry := 1;
else
carry := 0;
end if;
res.cells(i) := tmp;
end loop;
if lhs.actln > rhs.actln then
handlehighdigits(lhs.cells);
else
handlehighdigits(rhs.cells);
end if;
end addasabs;
-- subtracts rhs from lhs; ensure that lhs is greater than rhs
-- ensure the two numbers are non-negative
-- the return value is neither made definite nor compacted
procedure subasabs(lhs, rhs : object; res : out object) is
tmp : integer;
carry : integer := 0;
begin
for i in 1 .. rhs.actln loop
tmp := lhs.cells(i) - rhs.cells(i) - carry;
if tmp < 0 then
tmp := tmp + maxmulten;
carry := 1;
end if;
res.cells(i) := tmp;
if tmp /= 0 then
res.actln := i;
end if;
end loop;
for i in rhs.actln + 1 .. lhs.actln loop
tmp := lhs.cells(i) - carry;
if tmp < 0 then
tmp := tmp + maxmulten;
carry := 1;
end if;
res.cells(i) := tmp;
if tmp /= 0 then
res.actln := i;
end if;
end loop;
end subasabs;
-- create a big integer object
function create(cells : in cells_t) return object is
n : length_t := cells'Length;
actln : length_t := 1;
begin
for i in reverse 1 .. n loop
if cells(i) /= 0 then
actln := i;
exit;
end if;
end loop;
declare
res : object(actln);
begin
for i in 1 .. actln loop
res.cells(i) := cells(i);
end loop;
res.actln := actln;
return res;
end;
end create;
-- creates a big integer object on heap with value given by the argument
function create(o : object) return objectptr is
res : objectptr := new object(o.actln);
begin
for i in 1 .. o.actln loop
res.cells(i) := o.cells(i);
end loop;
res.actln := o.actln;
return res;
end;
-- gets the string representation of the big integer object
function tostring(o : in object) return string is
res : string := (integer(o.actln) * maxdigitspercell+1) * ' ';
wr : positive := 1;
begin
for i in reverse 1 .. o.actln loop
declare
tmp : string := integer'Image(o.cells(i));
trimmed : string := trim(tmp, both);
begin
if i = o.actln or else trimmed'length = 9 then
overwrite(res, wr, trimmed);
wr := wr + trimmed'Length;
else
declare
pad : string := 9 * '0';
begin
overwrite(pad, 9 - trimmed'length, trimmed);
overwrite(res, wr, pad);
wr := wr + 9;
end;
end if;
end;
end loop;
return res;
end tostring;
-- destroys the big integer object created on heap
procedure free(p : in out objectptr) is
begin
deallocate(p);
end free;
-- defines operator "+" on big integers
function "+"(lhs, rhs : in object) return object is
res : object(lhs.actln + rhs.actln + 1);
cmp : integer;
labs : object := getabs(lhs);
rabs : object := getabs(rhs);
lsgn : sign_t := getsgn(lhs);
rsgn : sign_t := getsgn(rhs);
begin
if lsgn = rsgn or else lsgn = 0 or else rsgn = 0 then
addasabs(labs, rabs, res);
if lsgn < 0 or rsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
else
cmp := cmpasabs(labs, rabs);
if cmp < 0 then
subasabs(rabs, labs, res);
if rsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
elsif cmp > 0 then
subasabs(labs, rabs, res);
if lsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
else
res.actln := 1;
res.cells(1) := 0;
end if;
end if;
declare
compacted : object := compact(res);
begin
return compacted;
end;
end "+";
-- defines operator "-" on big integers
function "-"(lhs, rhs : in object) return object is
res : object(lhs.actln + rhs.actln + 1);
cmp : integer;
labs : object := getabs(lhs);
rabs : object := getabs(rhs);
lsgn : sign_t := getsgn(lhs);
rsgn : sign_t := getsgn(rhs);
begin
if lsgn /= rsgn and then lsgn /= 0 and then rsgn /= 0 then
cmp := cmpasabs(labs, rabs);
if cmp < 0 then
subasabs(rabs, labs, res);
if rsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
elsif cmp > 0 then
subasabs(labs, rabs, res);
if lsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
else
res.actln := 1;
res.cells(1) := 0;
end if;
else
addasabs(labs, rabs, res);
if lsgn < 0 or rsgn < 0 then
res.cells(res.actln) := -res.cells(res.actln);
end if;
end if;
declare
compacted : object := compact(res);
begin
return compacted;
end;
end "-";
end ariane.numerics.biginteger;
Also a few things to point out regarding the code and language features.
1. ADA allows counting down (reverse iteration) in a 'for' statement by using 'reverse' reserved word
2. 'declare' block is extremely useful and elegant for defining a variable anywhere in code, and fundamentally allocating space for and instantiating the object on stack. This essentially is an ADA equivalent of arbitrarily placed variable declaration of most C family languages, but with better clarity, explicitness and a good consistency with both the concept and mechanism of allocation and its type system.
3. There is no way to change the content of a input parameter of a record type by setting the member of the method to aliased. And formal parameters can never be declared aliased.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
localStorage에 객체를 추가하는 방법은 무엇입니까?이 노트에서는 localStorage에 객체를 삽입하는 방법을 보여드리겠습니다. 경우에 따라 로컬 스토리지 또는 세션 스토리지에 데이터를 개체로 저장해야 할 수 있습니다. 어떻게 이것을 달성할 수 있습니까? 객체가 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.