Machines Learning 学习笔记(Week8)
2771 단어 MachineLearning
Unsupervised Learning
Clustering: K-means Algorithm
K-means Algorithm:
Input:
min\,J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K) = \frac{1}{m}\sum_{i=1}^m||\,x^{(i)}-\mu_{c^{(i)}}||^2
Random Initialization
For i = 1:100 {
Randomly initialize K-means
Run K-means. Get $c^{(1)},...,c^{(m)},\mu_1,...,\mu_K$
Compute cost function (distortion) $J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K)$
}
=>Pick clustering that gave lowest cost J
Dimensionality Reduction: Principal Component Analysis (PCA)
Purposes:
PCA Algorithm
Σ(Sigma) = \frac{1}{m}\sum_{i=1}^n(x^{(i)})(x^{(i)})^T
[U,S,V] = svd(Sigma);
Reconstruction from compressed representation
$X_{approx} = U_{reduce} * Z$
Choosing the number of principal components k
Reference
이 문제에 관하여(Machines Learning 学习笔记(Week8)), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/CHrIs23436939/items/c2b7baee02b6a4e500cb텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)