spark dataframe 에 열 을 추가 하 는 네 가지 방법
scala + spark 를 배 우 는 풋내기 로 서 처음에 dataframe 의 다양한 처 리 를 배 웠 습 니 다. 한 열 을 추가 하 는 방법 에 대해 여러 가지 조회 학습 을 통 해 다음 과 같은 네 가지 자주 사용 하 는 방법 을 정리 하여 여러분 께 공유 하여 선배 들 의 인터넷 지원 에 보답 하 겠 습 니 다.
부호 블록
//dataframe 1, createDataFrame
val trdd = input.select(targetColumns).rdd.map(x=>{
if (x.get(0).toString().toDouble > critValueR || x.get(0).toString().toDouble < critValueL)
Row(x.get(0).toString().toDouble,"F")
else Row(x.get(0).toString().toDouble,"T")
})
val schema = input.select(targetColumns).schema.add("flag", StringType, true)
val sample3 = ss.createDataFrame(trdd, schema).distinct().withColumnRenamed(targetColumns, "idx")
//dataframe 2
val code :(Int => String) = (arg: Int) => {if (arg > critValueR || arg < critValueL) "F" else "T"}
val addCol = udf(code)
val sample3 = input.select(targetColumns).withColumn("flag", addCol(input(targetColumns)))
.withColumnRenamed(targetColumns, "idx")
//dataframe 3
input.select(targetColumns).createOrReplaceTempView("tmp")
val sample3 = ss.sqlContext.sql("select distinct "+targetColname+
" as idx,case when "+targetColname+">"+critValueR+" then 'F'"+
" when "+targetColname+"
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
Spark 팁: 컴퓨팅 집약적인 작업을 위해 병합 후 셔플 파티션 비활성화작은 입력에서 UDAF(사용자 정의 집계 함수) 내에서 컴퓨팅 집약적인 작업을 수행할 때 spark.sql.adaptive.coalescePartitions.enabled를 false로 설정합니다. Apache Sp...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.