【DeepLearning】Exercise:Self-Taught Learning

13971 단어 exe
Exercise:Self-Taught Learning
연습 문제 링크:Exercise:Self-Taught Learning
 
feedForwardAutoencoder.m
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data)



% theta: trained weights from the autoencoder % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder. activation = sigmoid(W1 * data + repmat(b1, 1, size(data, 2))); %------------------------------------------------------------------- end %------------------------------------------------------------------- % Here's an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end

 
stlExercise.m
%% CS294A/CS294W Self-taught Learning Exercise



%  Instructions

%  ------------

% 

%  This file contains code that helps you get started on the

%  self-taught learning. You will need to complete code in feedForwardAutoencoder.m

%  You will also need to have implemented sparseAutoencoderCost.m and 

%  softmaxCost.m from previous exercises.

%

%% ======================================================================

%  STEP 0: Here we provide the relevant parameters values that will

%  allow your sparse autoencoder to get good filters; you do not need to 

%  change the parameters below.



inputSize  = 28 * 28;

numLabels  = 5;

hiddenSize = 200;

sparsityParam = 0.1; % desired average activation of the hidden units.

                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",

                     %  in the lecture notes). 

lambda = 3e-3;       % weight decay parameter       

beta = 3;            % weight of sparsity penalty term   

maxIter = 400;



%% ======================================================================

%  STEP 1: Load data from the MNIST database

%

%  This loads our training and test data from the MNIST database files.

%  We have sorted the data for you in this so that you will not have to

%  change it.



% Load MNIST database files

mnistData   = loadMNISTImages('mnist/train-images-idx3-ubyte');

mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');



% Set Unlabeled Set (All Images)



% Simulate a Labeled and Unlabeled set

labeledSet   = find(mnistLabels >= 0 & mnistLabels <= 4);

unlabeledSet = find(mnistLabels >= 5);



numTrain = round(numel(labeledSet)/2);

trainSet = labeledSet(1:numTrain);

testSet  = labeledSet(numTrain+1:end);



unlabeledData = mnistData(:, unlabeledSet);



trainData   = mnistData(:, trainSet);

trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5



testData   = mnistData(:, testSet);

testLabels = mnistLabels(testSet)' + 1;   % Shift Labels to the Range 1-5



% Output Some Statistics

fprintf('# examples in unlabeled set: %d
', size(unlabeledData, 2)); fprintf('# examples in supervised training set: %d

', size(trainData, 2)); fprintf('# examples in supervised testing set: %d

', size(testData, 2)); %% ====================================================================== % STEP 2: Train the sparse autoencoder % This trains the sparse autoencoder on the unlabeled training % images. % Randomly initialize the parameters theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ---------------------- % Find opttheta by running the sparse autoencoder on % unlabeledTrainingImages % Use minFunc to minimize the function addpath minFunc/ options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % sparseAutoencoderCost.m satisfies this. options.maxIter = maxIter;% Maximum number of iterations of L-BFGS to run options.display = 'on'; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ... inputSize, hiddenSize, ... lambda, sparsityParam, ... beta, unlabeledData), ... theta, options); %% ----------------------------------------------------- % Visualize weights W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize); display_network(W1'); %%====================================================================== %% STEP 3: Extract Features from the Supervised Dataset % % You need to complete the code in feedForwardAutoencoder.m so that the % following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... testData); %%====================================================================== %% STEP 4: Train the softmax classifier %% ----------------- YOUR CODE HERE ---------------------- % Use softmaxTrain.m from the previous exercise to train a multi-class % classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and % trainLabels lambda = 1e-4; options.maxIter = maxIter; [softmaxModel] = softmaxTrain(hiddenSize, numLabels, lambda, trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%====================================================================== %% STEP 5: Testing %% ----------------- YOUR CODE HERE ---------------------- % Compute Predictions on the test set (testFeatures) using softmaxPredict % and softmaxModel [pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score fprintf('Test Accuracy: %f%%
', 100*mean(pred(:) == testLabels(:))); % (note that we shift the labels by 1, so that digit 0 now corresponds to % label 1) % % Accuracy is the proportion of correctly classified images % The results for our implementation was: % % Accuracy: 98.3% % %

Test Accuracy: 98.208916%

좋은 웹페이지 즐겨찾기