CodeForces 424D Biathlon Track [2D dp]
6067 단어 dpcodeforces
Recently an official statement of the world Olympic Committee said that the Olympic Winter Games 2030 will be held in Tomsk. The city officials decided to prepare for the Olympics thoroughly and to build all the necessary Olympic facilities as early as possible. First, a biathlon track will be built.
To construct a biathlon track a plot of land was allocated, which is a rectangle divided into n × m identical squares. Each of the squares has two coordinates: the number of the row (from 1 to n), where it is located, the number of the column (from 1 to m), where it is located. Also each of the squares is characterized by its height. During the sports the biathletes will have to move from one square to another. If a biathlete moves from a higher square to a lower one, he makes a descent. If a biathlete moves from a lower square to a higher one, he makes an ascent. If a biathlete moves between two squares with the same height, then he moves on flat ground.
The biathlon track should be a border of some rectangular area of the allocated land on which biathletes will move in the clockwise direction. It is known that on one move on flat ground an average biathlete spends tp seconds, an ascent takes tu seconds, a descent takestd seconds. The Tomsk Administration wants to choose the route so that the average biathlete passes it in as close to t seconds as possible. In other words, the difference between time ts of passing the selected track and t should be minimum.
For a better understanding you can look at the first sample of the input data. In this sample n = 6, m = 7, and the administration wants the track covering time to be as close to t = 48 seconds as possible, also, tp = 3, tu = 6 and td = 2. If we consider the rectangle shown on the image by arrows, the average biathlete can move along the boundary in a clockwise direction in exactly 48 seconds. The upper left corner of this track is located in the square with the row number 4, column number 3 and the lower right corner is at square with row number 6, column number 7.
Among other things the administration wants all sides of the rectangle which boundaries will be the biathlon track to consist of no less than three squares and to be completely contained within the selected land.
You are given the description of the given plot of land and all necessary time values. You are to write the program to find the most suitable rectangle for a biathlon track. If there are several such rectangles, you are allowed to print any of them.
Input
The first line of the input contains three integers n, m and t (3 ≤ n, m ≤ 300, 1 ≤ t ≤ 109) — the sizes of the land plot and the desired distance covering time.
The second line also contains three integers tp, tu and td (1 ≤ tp, tu, td ≤ 100) — the time the average biathlete needs to cover a flat piece of the track, an ascent and a descent respectively.
Then n lines follow, each line contains m integers that set the heights of each square of the given plot of land. Each of the height values is a positive integer, not exceeding 106.
Output
In a single line of the output print four positive integers — the number of the row and the number of the column of the upper left corner and the number of the row and the number of the column of the lower right corner of the rectangle that is chosen for the track.
Sample Input
Input
6 7 48
3 6 2
5 4 8 3 3 7 9
4 1 6 8 7 1 1
1 6 4 6 4 8 6
7 2 6 1 6 9 4
1 9 8 6 3 9 2
4 5 6 8 4 3 7
Output
4 3 6 7
아주 간단한 문제인데, 네가 감히 O(n^4)를 쓰느냐에 따라 ==4500ms라고 했으니, 안심하고 대담하게 써라. 바로 주의해라. 똑바로 걷는 것과 거꾸로 걷는 것은 같은 라인이지만 값은 다르다!위아래가 다르니까!!
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[305][305][4];
int num[303][303];
int n,m,tp,tu,td,t;
int f(int a,int b)
{
if(a>b) return td;
else if(a==b) return tp;
else return tu;
}
int main()
{
// freopen("cin.txt","r",stdin);
while(~scanf("%d%d%d",&n,&m,&t))
{
scanf("%d%d%d",&tp,&tu,&td);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&num[i][j]);
for(int j=2;j<=m;j++){
for(int i=1;i<=n;i++){
dp[i][j][0]=dp[i][j-1][0]+f(num[i][j-1],num[i][j]);
}
}
for(int j=m-1;j>=1;j--){
for(int i=1;i<=n;i++){
dp[i][j][2]=dp[i][j+1][2]+f(num[i][j+1],num[i][j]);
}
}
for(int i=2;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j][1]=dp[i-1][j][1]+f(num[i-1][j],num[i][j]);
}
}
for(int i=n-1;i>=1;i--){
for(int j=1;j<=m;j++){
dp[i][j][3]=dp[i+1][j][3]+f(num[i+1][j],num[i][j]);
}
}
int maxn=0x3f3f3f3f,x1,x2,y1,y2;
bool flag=true;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
for(int ii=i+2;ii<=n;ii++){
for(int jj=j+2;jj<=m;jj++){
int t0=dp[i][jj][0]-dp[i][j][0];
int t1=dp[ii][jj][1]-dp[i][jj][1];
int t2=dp[ii][j][2]-dp[ii][jj][2];
int t3=dp[i][j][3]-dp[ii][j][3];
int dt=t0+t1+t2+t3;
int r=abs(dt-t);
if(r<maxn){
maxn=r;
x1=i;
y1=j;
x2=ii;
y2=jj;
if(maxn==0){
flag=false;
}
}
}
}
}
}
printf("%d %d %d %d
",x1,y1,x2,y2);
}
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
【경쟁 프로 전형적인 90문】008의 해설(python)의 해설 기사입니다. 해설의 이미지를 봐도 모르는 (이해력이 부족한) 것이 많이 있었으므로, 나중에 다시 풀었을 때에 확인할 수 있도록 정리했습니다. ※순차적으로, 모든 문제의 해설 기사를 들어갈 예정입니다. 문자열...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.