Clone Graph leetcode 자바 (DFS 및 BFS 기반)
Clone an undirected graph. Each node in the graph contains a
label
and a list of its neighbors
. OJ's undirected graph serialization:
Nodes are labeled uniquely. We use
#
as a separator for each node, and ,
as a separator for node label and each neighbor of the node. As an example, consider the serialized graph
{0,1,2#1,2#2,2}
. The graph has a total of three nodes, and therefore contains three parts as separated by
#
. 0
. Connect node 0
to both nodes 1
and 2
. 1
. Connect node 1
to node 2
. 2
. Connect node 2
to node 2
(itself), thus forming a self-cycle. Visually, the graph looks like the following:
1
/ \
/ \
0 --- 2
/ \
\_/
:
HashMap 。
DFS BFS。BFS Queue ,DFS ( )。
HashMap,key ,value copy , DFS,BFS neighbors 。
DFS BFS。
DFS(Dpeth-first Search)
, , , 。
Algorithm , ,DFS , , 。
, 。
Wikipedia :“Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures.
One starts at the root (selecting some arbitrary node as the root in the case of a graph) and explores as far as possible
along each branch before backtracking.”
DFS , , 。
DFS :
Input: A graph G and a root v of G
1 procedure DFS(G,v):
2 label v as discovered
3
for all edges from v to w in G.adjacentEdges(v)
do
4
if vertex w is not labeled as discovered then
5 recursively call DFS(G,w)
DFS :
Input: A graph G and a root v of G
1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4
while S is not empty
5 v ← S.pop()
6
if v is not labeled as discovered:
7 label v as discovered
8
for all edges from v to w in G.adjacentEdges(v)
do
9 S.push(w)
BFS(Breadth-first Search)
BFS , neighbors , neighbor , 。
BFS ,BFS 。
Wikipedia BFS :
“In graph theory, breadth-first search (BFS) is a strategy for searching in a graph
when search is limited to essentially two operations: (a) visit and
inspect a node of a graph; (b) gain access to visit the nodes that
neighbor the currently visited node. The BFS begins at a root node and
inspects all the neighboring nodes. Then for each of those neighbor
nodes in turn, it inspects their neighbor nodes which were unvisited,
and so on. Compare BFS with the equivalent, but more memory-efficient
Iterative deepening depth-first search and contrast with depth-first search.”
BFS queue+ , :
Input: A graph G and a root v of G
1 procedure BFS(G,v) is
2 create a queue Q
3 create a set V
4 add v to V
5 enqueue v onto Q
6
while Q is not empty loop
7 t ← Q.dequeue()
8
if t is what we are looking
for then
9
return t
10 end
if
11
for all edges e in G.adjacentEdges(t) loop
12 u ← G.adjacentVertex(t,e)
13
if u is not in V then
14 add u to V
15 enqueue u onto Q
16 end
if
17 end loop
18 end loop
19
return none
20 end BFS
********************************************************************************************************************************
3 。
BFS , queue, queue node, node neighbors, visited , , neighbor。
neighbor 。
:
1
public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
2
if(node ==
null)
3
return
null;
4
5 HashMap hm =
new HashMap();
6 LinkedList queue =
new LinkedList();
7 UndirectedGraphNode head =
new UndirectedGraphNode(node.label);
8 hm.put(node, head);
9 queue.add(node);
10
11
while(!queue.isEmpty()){
12 UndirectedGraphNode curnode = queue.poll();
13
for(UndirectedGraphNode aneighbor: curnode.neighbors){
//
check each neighbor
14
if(!hm.containsKey(aneighbor)){
//
if not visited,then add to queue
15
queue.add(aneighbor);
16 UndirectedGraphNode newneighbor =
new UndirectedGraphNode(aneighbor.label);
17 hm.put(aneighbor, newneighbor);
18 }
19
20 hm.
get(curnode).neighbors.add(hm.
get(aneighbor));
21 }
22 }
23
24
return head;
25 }
DFS , neighbors:
1
public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
2
if(node ==
null)
3
return
null;
4
5 HashMap hm =
new HashMap();
6 UndirectedGraphNode head =
new UndirectedGraphNode(node.label);
7 hm.put(node, head);
8
9 DFS(hm, node);
//
DFS
10
return head;
11 }
12
public
void DFS(HashMap hm, UndirectedGraphNode node){
13
if(node ==
null)
14
return;
15
16
for(UndirectedGraphNode aneighbor: node.neighbors){
17
if(!hm.containsKey(aneighbor)){
18 UndirectedGraphNode newneighbor =
new UndirectedGraphNode(aneighbor.label);
19 hm.put(aneighbor, newneighbor);
20 DFS(hm, aneighbor);
//
DFS
21
}
22 hm.get(node).neighbors.add(hm.get(aneighbor));
23 }
24 }
DFS , BFS queue stack, , 。 :
1
public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
2
if(node ==
null)
3
return
null;
4
5 HashMap hm =
new HashMap();
6 LinkedList stack =
new LinkedList();
7 UndirectedGraphNode head =
new UndirectedGraphNode(node.label);
8 hm.put(node, head);
9 stack.push(node);
10
11
while(!stack.isEmpty()){
12 UndirectedGraphNode curnode = stack.pop();
13
for(UndirectedGraphNode aneighbor: curnode.neighbors){
//
check each neighbor
14
if(!hm.containsKey(aneighbor)){
//
if not visited,then push to stack
15
stack.push(aneighbor);
16 UndirectedGraphNode newneighbor =
new UndirectedGraphNode(aneighbor.label);
17 hm.put(aneighbor, newneighbor);
18 }
19
20 hm.get(curnode).neighbors.add(hm.get(aneighbor));
21 }
22 }
23
24
return head;
25 }
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
다양한 언어의 JSONJSON은 Javascript 표기법을 사용하여 데이터 구조를 레이아웃하는 데이터 형식입니다. 그러나 Javascript가 코드에서 이러한 구조를 나타낼 수 있는 유일한 언어는 아닙니다. 저는 일반적으로 '객체'{}...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.