Basic - Pandas, Numpy -
0. Introduction of Numpy
NumPy is a Python package. It stands for 'Numerical Python', and Numpy is a linear algebra library to work with dimensional arrays, which contains useful linear algebra routines and random number capabilities.
1. Numpy arrange() method
The arange() method in the Numpy module in Python is used to generate linear sequence of numbers.
If does it on the basis of the pre-provide starting and ending points along with a constant step size.
Syntax
import numpy as np
start = 1 # default 0
stop = 21
step = 1 # default 1
none = int
np.arange(start, stop, step, dtype=none)
Output
Omit
data = np.arange(start, stop, step)
data
Output
Combination of reshape() method
data = np.arange(start, stop, step).reshape(4,5)
data
Output
Combination of array() method
title = np.array(['UserId', 'SomethingId', 'ProductName', 'Price', 'Ratings'])
df = pd.DataFrame(data, columns=title)
df
Output
Pick up (Slice) specific data
df_part = pd.DataFrame(data[:, 3:], columns=title[3:])
df_part
Output
df_part = pd.DataFrame(data[:, :3], columns=title[:3])
df_part
Output
2. Pandas
Pandas is a library providing fast, flexible, and expressive way to work with a relational or table of data, both easily and intuitive. It allows you to process your data in a way similar to SQL. Scikit-learn is a library of classic machine learning algorithms. It features various classification, regression, and clustering algorithms, including support virtual machines, random force, and a lot more.
concat() method
pandas.concat
df12 = pd.concat([df_part2, df_part1], axis=1)
df12
Output
References:
LINKS
- Numpy-Official
- Pandas-Official
- Python에서 NumPy의 arange 함수를 이용하는 방법을 현역 엔지니어가 해설 【초보자용】
- GitHub : neural-style
- GitHub : Fast Style Transfer in TensorFlow
Reference
이 문제에 관하여(Basic - Pandas, Numpy -), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/O-Mik/items/fc9e20e15cf1baa8a1ff
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
The arange() method in the Numpy module in Python is used to generate linear sequence of numbers.
If does it on the basis of the pre-provide starting and ending points along with a constant step size.
Syntax
import numpy as np
start = 1 # default 0
stop = 21
step = 1 # default 1
none = int
np.arange(start, stop, step, dtype=none)
Output
Omit
data = np.arange(start, stop, step)
data
Output
Combination of reshape() method
data = np.arange(start, stop, step).reshape(4,5)
data
Output
Combination of array() method
title = np.array(['UserId', 'SomethingId', 'ProductName', 'Price', 'Ratings'])
df = pd.DataFrame(data, columns=title)
df
Output
Pick up (Slice) specific data
df_part = pd.DataFrame(data[:, 3:], columns=title[3:])
df_part
Output
df_part = pd.DataFrame(data[:, :3], columns=title[:3])
df_part
Output
2. Pandas
Pandas is a library providing fast, flexible, and expressive way to work with a relational or table of data, both easily and intuitive. It allows you to process your data in a way similar to SQL. Scikit-learn is a library of classic machine learning algorithms. It features various classification, regression, and clustering algorithms, including support virtual machines, random force, and a lot more.
concat() method
pandas.concat
df12 = pd.concat([df_part2, df_part1], axis=1)
df12
Output
References:
LINKS
- Numpy-Official
- Pandas-Official
- Python에서 NumPy의 arange 함수를 이용하는 방법을 현역 엔지니어가 해설 【초보자용】
- GitHub : neural-style
- GitHub : Fast Style Transfer in TensorFlow
Reference
이 문제에 관하여(Basic - Pandas, Numpy -), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://qiita.com/O-Mik/items/fc9e20e15cf1baa8a1ff
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
df12 = pd.concat([df_part2, df_part1], axis=1)
df12
Reference
이 문제에 관하여(Basic - Pandas, Numpy -), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/O-Mik/items/fc9e20e15cf1baa8a1ff텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)