AVL Tree | Set 2 (Deletion)
95188 단어 데이터 구조
Steps to follow for deletion. To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).
T1, T2 and T3 are subtrees of the tree rooted with y (on left side)
or x (on right side)
y x
/ \ Right Rotation / \
x T3 – - – - – - – > T1 y
/ \ < - - - - - - - / \
T1 T2 Left Rotation T2 T3
Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.
c) Right Right Case
z y
/ \ / \
T1 y Left Rotate(z) z x
/ \ - - - - - - - -> / \ / \
T2 x T1 T2 T3 T4
/ \
T3 T4
C implementation Following is the C implementation for AVL Tree Deletion. The following C implementation uses the recursive BST delete as basis. In the recursive BST delete, after deletion, we get pointers to all ancestors one by one in bottom up manner. So we don’t need parent pointer to travel up. The recursive code itself travels up and visits all the ancestors of the deleted node.
우 리 는 재 귀적 인 프로그램 을 사용 하여 AVL 트 리 에서 노드 를 삭제 합 니 다. 재 귀적 인 프로그램 을 사용 할 때 노드 를 삭제 한 후에 이때 의 지침 은 아버 지 를 가리 키 고 자동 으로 재 귀적 으로 돌아 갈 때 아래 에서 위로 할아버지 의 노드 를 방문 합 니 다.
#include
#include
using namespace std;
class Node{
public:
int data;
Node *left,*right;
int height;
Node():data(0),left(NULL),right(NULL),height(0){};
};
int getHeight(Node *node);
int max(int a,int b);
Node* newNode(int key);
Node *rightRotate(Node *node);
Node *leftRotate(Node *node);
int getBalance(Node *node);
Node *insert(Node *node,int key);
Node *minValueNode(Node *node);
Node *deletNode(Node *root,int key);
void preOrder(Node *node);
int main(){
Node *root=NULL;
root = insert(root, 9);
root = insert(root, 11);
root = insert(root, 10);
root = insert(root, 6);
root = insert(root, 5);
root = insert(root, 0);
root = insert(root, 2);
root = insert(root, -1);
root = insert(root, 1);
preOrder(root);
printf("
");
root = deletNode(root,10);
preOrder(root);
printf("
");
return 0;
}
int getHeight(Node *node){
if(node==NULL){
return 0;
}return node->height;
}
// A utility function to get maximum of two integers
int max(int a,int b){
return (a>b)?a:b;
}
Node* newNode(int key){
Node* node=new Node();
node->data=key;
return node;
}
Node *rightRotate(Node *node){
Node *x=node->left;
Node *T2=x->right;
x->right=node;
node->left=T2;
node->height=max(getHeight(node->left),getHeight(node->right))+1;
x->height=max(getHeight(x->left),getHeight(x->right))+1;
return x;
}
Node *leftRotate(Node *node){
Node *y=node->right;
Node *T2=y->left;
y->left=node;
node->right=T2;
node->height=max(getHeight(node->left),getHeight(node->right))+1;
y->height=max(getHeight(y->left),getHeight(y->right))+1;
return y;
}
int getBalance(Node *node){
if(node==NULL){return 0;}
return (getHeight(node->left)-getHeight(node->right));
}
Node *insert(Node *node,int key){
if(node==NULL){return newNode(key);}
else if(key>node->data){
node->right=insert(node->right,key);
}else if(key<node->data){
node->left=insert(node->left,key);
}else return node;
node->height=max(getHeight(node->left),getHeight(node->right))+1;
printf("node->data=%d,node->height=%d
",node->data,node->height);
int balfac=getBalance(node);
// If this node becomes unbalanced,then there are 4 cases
if(balfac>1&&key<node->left->data){
printf("rightRotate:%d
",node->data);
return rightRotate(node);
}
if(balfac>1&&key>node->left->data){
printf("001:leftRotate(%d)
",node->left->data);
node->left=leftRotate(node->left);
printf("002:rightRotate(%d)
",node->data);
return rightRotate(node);
}
if(balfac<-1&&key>node->right->data){
cout<<"leftRotate:"<<node->data<<endl;
return leftRotate(node);
}
if(balfac<-1&&key<node->right->data){
printf("001:rightRotate(%d)
",node->right->data);
node->right=rightRotate(node->right);
printf("002:leftRotate(%d)
",node->data);
return leftRotate(node);
}
return node; /* return the (unchanged) node pointer */
}
// Recursive function to delete a node with given key from subtree with
// given root. It returns root of the modified subtree.
Node *minValueNode(Node *node){
Node *current=node;
while(current->left!=NULL){
current=current->left;
}
return current;
}
Node *deletNode(Node *root,int key){
// STEP 1: PERFORM STANDARD BST DELETE
if(root==NULL){return root;}
else if(key>root->data){
root->right=deletNode(root->right,key);
}else if(key<root->data){
root->left=deletNode(root->left,key);
}else{ //
// node with only one child or no child
if(root->left==NULL||root->right==NULL){
Node *tmp=root->left?root->left:root->right;
// No child case
if(tmp==NULL){
tmp=root;
root=NULL;
}else{
*root=*tmp; // Copy the contents of
free(tmp); // the non-empty child
}
}else{
//node with two children: Get the inorder
// successor (smallest in the right subtree)
Node *tmp=minValueNode(root->right);
// Copy the inorder successor's data to this node
root->data=tmp->data;
// Delete the inorder successor
root->right=deletNode(root->right, tmp->data);
}
}
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height=1+max(getHeight(root->left),getHeight(root->right));
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether this
// node became unbalanced)
int balfac=getBalance(root);
// If this node becomes unbalanced,then there are 4 cases(just like insert operation)
// Left Left Case
if(balfac>1&&getBalance(root->left)>=0){
return rightRotate(root);
}
// Left Right Case
if(balfac>1&&getBalance(root->left)<0){
root->left=leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if(balfac<-1&&getBalance(root->right)<=0){
return leftRotate(root);
}
if(balfac<-1&&getBalance(root->right)>0){
root->right=rightRotate(root->right);
return leftRotate(root);
}
return root;
}
void preOrder(Node *node){
if(node==NULL){
return ;
}
printf("%d->",node->data);
preOrder(node->left);
preOrder(node->right);
}
// C++ program to delete a node from AVL Tree
#include
#include
using namespace std;
// An AVL tree node
class Node
{
public:
int key;
Node *left;
Node *right;
int height;
};
// A utility function to get maximum
// of two integers
int max(int a, int b);
// A utility function to get height
// of the tree
int height(Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum
// of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a
new node with the given key and
NULL left and right pointers. */
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 0; // new node is initially
// added at leaf
return(node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
Node *rightRotate(Node *y)
{ printf("rightRotate:%d
",y->key);
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
Node *leftRotate(Node *x)
{ printf("leftRotate:%d
",x->key);
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node *N)
{
if (N == NULL)
return 0;
return height(N->left) -
height(N->right);
}
Node* insert(Node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this
ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
printf("node->data=%d,height=%d,balance=%d
",node->key,node->height,balance);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key){
return rightRotate(node);}
// Right Right Case
if (balance < -1 && key > node->right->key){
return leftRotate(node);}
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
// printf("root:%d
",node->key);
}
/* Given a non-empty binary search tree,
return the node with minimum key value
found in that tree. Note that the entire
tree does not need to be searched. */
Node * minValueNode(Node* node)
{
Node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL)
current = current->left;
return current;
}
// Recursive function to delete a node
// with given key from subtree with
// given root. It returns root of the
// modified subtree.
Node* deleteNode(Node* root, int key)
{
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
return root;
// If the key to be deleted is smaller
// than the root's key, then it lies
// in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater
// than the root's key, then it lies
// in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key is same as root's key, then
// This is the node to be deleted
else
{
// node with only one child or no child
if( (root->left == NULL) ||(root->right == NULL) )
{
Node *temp = root->left ?
root->left :
root->right;
// No child case
if (temp == NULL)
{
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
}
else
{
// node with two children: Get the inorder
// successor (smallest in the right subtree)
Node* temp = minValueNode(root->right);
// Copy the inorder successor's
// data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right,
temp->key);
}
}
// If the tree had only one node
// then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF
// THIS NODE (to check whether this
// node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 &&
getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 &&
getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 &&
getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 &&
getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
// The function also prints height
// of every node
void preOrder(Node *root)
{
if(root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Driver Code
int main()
{
Node *root = NULL;
/* Constructing tree given in
the above figure */
root = insert(root, 12);
root = insert(root, 11);
root = insert(root, 10);
root = insert(root, 9);
root = insert(root, 8);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 0);
root = insert(root, 21);
root = insert(root, 14);
root = insert(root, 13);
root = insert(root, 20);
root = insert(root, 23);
root = insert(root, 18);
cout << "Preorder traversal of the "
"constructed AVL tree is
";
preOrder(root);
root = deleteNode(root, 20);
cout << "
Preorder traversal after"
<< " deletion of 10
";
preOrder(root);
return 0;
}
// This code is contributed by rathbhupendra
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
정수 반전Udemy 에서 공부 한 것을 중얼거린다 Chapter3【Integer Reversal】 (예) 문자열로 숫자를 반전 (toString, split, reverse, join) 인수의 수치 (n)가 0보다 위 또는 ...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.