python opencv 얼굴 인식 출근 시스템 의 전체 소스 코드

운영 환경 이나 원 격 디 버 깅 을 설치 하려 면 QQ 905733049 또는 QQ 2945218359 를 추가 하여 전문 기술자 가 원 격 으로 협조 할 수 있 습 니 다!
실행 결 과 는 다음 과 같 습 니 다.

코드 는 다음 과 같 습 니 다:

import wx
import wx.grid
from time import localtime,strftime
import os
import io
import zlib
import dlib  #       dlib
import numpy as np  #       numpy
import cv2  #       OpenCv
import _thread
import threading
 
ID_NEW_REGISTER = 160
ID_FINISH_REGISTER = 161
 
ID_START_PUNCHCARD = 190
ID_END_PUNCARD = 191
 
ID_OPEN_LOGCAT = 283
ID_CLOSE_LOGCAT = 284
 
ID_WORKER_UNAVIABLE = -1
 
PATH_FACE = "data/face_img_database/"
# face recognition model, the object maps human faces into 128D vectors
facerec = dlib.face_recognition_model_v1("model/dlib_face_recognition_resnet_model_v1.dat")
# Dlib    
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('model/shape_predictor_68_face_landmarks.dat')
 
class WAS(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self,parent=None,title="      ",size=(920,560))
 
        self.initMenu()
        self.initInfoText()
        self.initGallery()
        self.initDatabase()
        self.initData()
 
    def initData(self):
        self.name = ""
        self.id =ID_WORKER_UNAVIABLE
        self.face_feature = ""
        self.pic_num = 0
        self.flag_registed = False
        self.puncard_time = "21:00:00"
        self.loadDataBase(1)
 
    def initMenu(self):
 
        menuBar = wx.MenuBar()  #     
        menu_Font = wx.Font()#Font(faceName="consolas",pointsize=20)
        menu_Font.SetPointSize(14)
        menu_Font.SetWeight(wx.BOLD)
 
 
        registerMenu = wx.Menu() #    
        self.new_register = wx.MenuItem(registerMenu,ID_NEW_REGISTER,"    ")
        self.new_register.SetBitmap(wx.Bitmap("drawable/new_register.png"))
        self.new_register.SetTextColour("SLATE BLUE")
        self.new_register.SetFont(menu_Font)
        registerMenu.Append(self.new_register)
 
        self.finish_register = wx.MenuItem(registerMenu,ID_FINISH_REGISTER,"    ")
        self.finish_register.SetBitmap(wx.Bitmap("drawable/finish_register.png"))
        self.finish_register.SetTextColour("SLATE BLUE")
        self.finish_register.SetFont(menu_Font)
        self.finish_register.Enable(False)
        registerMenu.Append(self.finish_register)
 
 
        puncardMenu = wx.Menu()
        self.start_punchcard = wx.MenuItem(puncardMenu,ID_START_PUNCHCARD,"    ")
        self.start_punchcard.SetBitmap(wx.Bitmap("drawable/start_punchcard.png"))
        self.start_punchcard.SetTextColour("SLATE BLUE")
        self.start_punchcard.SetFont(menu_Font)
        puncardMenu.Append(self.start_punchcard)
 
 
        self.close_logcat = wx.MenuItem(logcatMenu, ID_CLOSE_LOGCAT, "    ")
        self.close_logcat.SetBitmap(wx.Bitmap("drawable/close_logcat.png"))
        self.close_logcat.SetFont(menu_Font)
        self.close_logcat.SetTextColour("SLATE BLUE")
        logcatMenu.Append(self.close_logcat)
 
        menuBar.Append(registerMenu,"&    ")
        menuBar.Append(puncardMenu,"&    ")
        menuBar.Append(logcatMenu,"&    ")
        self.SetMenuBar(menuBar)
 
        self.Bind(wx.EVT_MENU,self.OnNewRegisterClicked,id=ID_NEW_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnFinishRegisterClicked,id=ID_FINISH_REGISTER)
        self.Bind(wx.EVT_MENU,self.OnStartPunchCardClicked,id=ID_START_PUNCHCARD)
        self.Bind(wx.EVT_MENU,self.OnEndPunchCardClicked,id=ID_END_PUNCARD)
        self.Bind(wx.EVT_MENU,self.OnOpenLogcatClicked,id=ID_OPEN_LOGCAT)
        self.Bind(wx.EVT_MENU,self.OnCloseLogcatClicked,id=ID_CLOSE_LOGCAT)
 
 
        pass
 
    def OnCloseLogcatClicked(self,event):
        self.SetSize(920,560)
 
        self.initGallery()
        pass
 
    def register_cap(self,event):
        #    cv2      
        self.cap = cv2.VideoCapture(0)
        # cap.set(propId, value)
        #       ,propId       ,value      
        # self.cap.set(3, 600)
        # self.cap.set(4,600)
        # cap       
        while self.cap.isOpened():
            # cap.read()
            #      :
            #         true/false,            /       
            #        ,       
            flag, im_rd = self.cap.read()
 
            #       1ms,   0       
            kk = cv2.waitKey(1)
            #     dets
            dets = detector(im_rd, 1)
 
            #      
            if len(dets) != 0:
                biggest_face = dets[0]
                #       
                maxArea = 0
                for det in dets:
                    w = det.right() - det.left()
                    h = det.top()-det.bottom()
                    if w*h > maxArea:
                        biggest_face = det
                        maxArea = w*h
                        #      
 
                cv2.rectangle(im_rd, tuple([biggest_face.left(), biggest_face.top()]),
                                      tuple([biggest_face.right(), biggest_face.bottom()]),
                                      (255, 0, 0), 2)
                img_height, img_width = im_rd.shape[:2]
                image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB)
                pic = wx.Bitmap.FromBuffer(img_width, img_height, image1)
                #      panel 
                self.bmp.SetBitmap(pic)
 
                #                   ,    features_cap_arr
                shape = predictor(im_rd, biggest_face)
                features_cap = facerec.compute_face_descriptor(im_rd, shape)
 
                #       ,           
                for i,knew_face_feature in enumerate(self.knew_face_feature):
                    #                    
                    compare = return_euclidean_distance(features_cap, knew_face_feature)
                    if compare == "same":  #       
                        self.infoText.AppendText(self.getDateAndTime()+"  :"+str(self.knew_id[i])
                                                 +"   :"+self.knew_name[i]+"         \r
") self.flag_registed = True self.OnFinishRegister() _thread.exit() # print(features_known_arr[i][-1]) face_height = biggest_face.bottom()-biggest_face.top() face_width = biggest_face.right()- biggest_face.left() im_blank = np.zeros((face_height, face_width, 3), np.uint8) try: for ii in range(face_height): for jj in range(face_width): im_blank[ii][jj] = im_rd[biggest_face.top() + ii]parent=self.bmp,max=100000000,min=ID_WORKER_UNAVIABLE) for knew_id in self.knew_id: if knew_id == self.id: self.id = ID_WORKER_UNAVIABLE wx.MessageBox(message=" , ", caption=" ") while self.name == '': self.name = wx.GetTextFromUser(message=" , ", caption=" ", default_value="", parent=self.bmp) # for exsit_name in (os.listdir(PATH_FACE)): if self.name == exsit_name: wx.MessageBox(message=" , ", caption=" ") self.name = '' break os.makedirs(PATH_FACE+self.name) _thread.start_new_thread(self.register_cap,(event,)) pass def OnFinishRegister(self): self.new_register.Enable(True) self.finish_register.Enable(False) self.cap.release() self.bmp.SetBitmap(wx.Bitmap(self.pic_index)) if self.flag_registed == True: dir = PATH_FACE + self.name for file in os.listdir(dir): os.remove(dir+"/"+file) print(" ", dir+"/"+file) os.rmdir(PATH_FACE + self.name) print(" ", dir) self.initData() return if self.pic_num>0: pics = os.listdir(PATH_FACE + self.name) feature_list = [] feature_average = [] for i in range(len(pics)): pic_path = PATH_FACE + self.name + "/" + pics[i] print(" :", pic_path) img = iio.imread(pic_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dets = detector(img_gray, 1) if len(dets) != 0: shape = predictor(img_gray, dets[0]) face_descriptor = facerec.compute_face_descriptor(img_gray, shape) feature_list.append(face_descriptor) else: face_descriptor = 0 print(" ") if len(feature_list) > 0: for j in range(128): # feature_average.append(0) for i in range(len(feature_list)): feature_average[j] += feature_list[i][j] feature_average[j] = (feature_average[j]) / len(feature_list) self.insertARow([self.id,self.name,feature_average],1) self.infoText.AppendText(self.getDateAndTime()+" :"+str(self.id) +" :"+self.name+" \r
") pass else: os.rmdir(PATH_FACE + self.name) print(" ",PATH_FACE + self.name) self.initData() def OnFinishRegisterClicked(self,event): self.OnFinishRegister() pass def OnStartPunchCardClicked(self,event): # cur_hour = datetime.datetime.now().hour # print(cur_hour) # if cur_hour>=8 or cur_hour<6: # wx.MessageBox(message=''' ,
# :6:00~7:59''', caption=" ") # return self.start_punchcard.Enable(False) self.end_puncard.Enable(True) self.loadDataBase(2) threading.Thread(target=self.punchcard_cap,args=(event,)).start() #_thread.start_new_thread(self.punchcard_cap,(event,)) pass def OnEndPunchCardClicked(self,event): self.start_punchcard.Enable(True) self.end_puncard.Enable(False) pass def initGallery(self): self.pic_index = wx.Image("drawable/index.png", wx.BITMAP_TYPE_ANY).Scale(600, 500) self.bmp = wx.StaticBitmap(parent=self, pos=(320,0), bitmap=wx.Bitmap(self.pic_index)) pass def getDateAndTime(self): dateandtime = strftime("%Y-%m-%d %H:%M:%S",localtime()) return "["+dateandtime+"]" # # def initDatabase(self): conn = sqlite3.connect("inspurer.db") # cur = conn.cursor() # cur.execute('''create table if not exists worker_info (name text not null, id int not null primary key, face_feature array not null)''') cur.execute('''create table if not exists logcat (datetime text not null, id int not null, name text not null, late text not null)''') cur.close() conn.commit() conn.close() def adapt_array(self,arr): out = io.BytesIO() np.save(out, arr) out.seek(0) dataa = out.read() # return sqlite3.Binary(zlib.compress(dataa, zlib.Z_BEST_COMPRESSION)) def convert_array(self,text): out = io.BytesIO(text) out.seek(0) dataa = out.read() # out = io.BytesIO(zlib.decompress(dataa)) return np.load(out) def insertARow(self,Row,type): conn = sqlite3.connect("inspurer.db") # cur = conn.cursor() # if type == 1: cur.execute("insert into worker_info (id,name,face_feature) values(?,?,?)", (Row[0],Row[1],self.adapt_array(Row[2]))) print(" ") if type == 2: cur.execute("insert into logcat (id,name,datetime,late) values(?,?,?,?)", (Row[0],Row[1],Row[2],Row[3])) print(" ") pass cur.close() conn.commit() conn.close() pass def loadDataBase(self,type): conn = sqlite3.connect("inspurer.db") # cur = conn.cursor() # if type == 1: self.knew_id = [] self.knew_name = [] self.knew_face_feature = [] cur.execute('select id,name,face_feature from worker_info') origin = cur.fetchall() for row in origin: print(row[0]) self.knew_id.append(row[0]) print(row[1]) self.knew_name.append(row[1]) print(self.convert_array(row[2])) self.knew_face_feature.append(self.convert_array(row[2])) if type == 2: self.logcat_id = [] self.logcat_name = [] self.logcat_datetime = [] self.logcat_late = [] cur.execute('select id,name,datetime,late from logcat') origin = cur.fetchall() for row in origin: print(row[0]) self.logcat_id.append(row[0]) print(row[1]) self.logcat_name.append(row[1]) print(row[2]) self.logcat_datetime.append(row[2]) print(row[3]) self.logcat_late.append(row[3]) pass app = wx.App() frame = WAS() frame.Show() app.MainLoop()
실행 결 과 는 다음 과 같 습 니 다.

C+학습 참고 인 스 턴 스:
C++MFC 를 사용 하여 간단 한 오목 게임 프로그램 을 만 듭 니 다.
https://www.jb51.net/article/180940.htm
C++간이 오목 게임 실현
https://www.jb51.net/article/190548.htm
c++opencv 인식,포 지 셔 닝 QR 코드 기반
https://www.jb51.net/article/207158.htm
python opencv 얼굴 인식 출근 시스템 의 전체 소스 코드 에 관 한 이 글 은 여기까지 소개 되 었 습 니 다.더 많은 python 얼굴 인식 출근 시스템 내용 은 우리 의 이전 글 을 검색 하거나 아래 의 관련 글 을 계속 찾 아 보 세 요.앞으로 많은 응원 바 랍 니 다!

좋은 웹페이지 즐겨찾기