Uniswap V2 Core

The core consists of a singleton factory and many pairs, which the factory is responsible for creating and indexing.

💜Factory

The factory holds the generic bytecode responsible for powering pairs. Its primary job is to create one and only one smart contract per unique token pair. It also contains logic to turn on the protocol charge.

address public feeTo;
address public feeToSetter;

feeTo: address that receives protocal charge(0.05%)
feeToSetter: address that can set feeTo

mapping(address => mapping(address => address)) public getPair;
address[] public allPairs;
function allPairsLength() external view returns (uint) {
    return allPairs.length;
}

getPair: Keeps track of token pairs that already exist. If getPair[token1][token2]=address(0), it doesn't exist.
allPairs: Keeps track of the address of all pairs.

 function createPair(address tokenA, address tokenB) external returns (address pair) {
        require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');
        (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
        require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');
        require(getPair[token0][token1] == address(0), 'UniswapV2: PAIR_EXISTS'); // single check is sufficient
        bytes memory bytecode = type(UniswapV2Pair).creationCode;
        bytes32 salt = keccak256(abi.encodePacked(token0, token1));
        assembly {
            pair := create2(0, add(bytecode, 32), mload(bytecode), salt)
        }
        IUniswapV2Pair(pair).initialize(token0, token1);
        getPair[token0][token1] = pair;
        getPair[token1][token0] = pair; // populate mapping in the reverse direction
        allPairs.push(pair);
        emit PairCreated(token0, token1, pair, allPairs.length);
    }

createPair: creates token pair if it doesn't exist already

function setFeeTo(address _feeTo) external {
    require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
    feeTo = _feeTo;
}
function setFeeToSetter(address _feeToSetter) external {
    require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
    feeToSetter = _feeToSetter;
}

setFeeTo: If msg.sender is the address allowed to change feeTo(feeToSetter), this lets feeTo to change.
setFeeToSetter: The original feeToSetter can change feeToSetter.

Factory Reference
UniswapV2Factory.sol

🧡Pairs

Pairs have two primary purposes: serving as automated market makers and keeping track of pool token balances. They also expose data which can be used to build decentralized price oracles.

    address public factory;
    address public token0;
    address public token1;
  • factory address
  • token0 address(strictly less than token1)
  • token1 address
    uint112 private reserve0;
    uint112 private reserve1;
    uint32  private blockTimestampLast;
  • token0 amount in pool
  • token1 amount in pool
  • Time of last block created regarding these tokens

getReserves allows viewing of these state variables

    uint public price0CumulativeLast;
    uint public price1CumulativeLast;
    uint public kLast;
  • time-weighted accumulated price to prevent attacks
  • kLast: reserve0 * reserve1, as of immediately after the most recent liquidity event
    function initialize(address _token0, address _token1) external {
        require(msg.sender == factory, 'UniswapV2: FORBIDDEN');
        token0 = _token0;
        token1 = _token1;
    }

initialized: When factory uses create function and pair contract is made, this function is called once.

    function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
        require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
        uint32 blockTimestamp = uint32(block.timestamp % 2**32);
        uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
        if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
            // * never overflows, and + overflow is desired
            price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
            price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
        }
        reserve0 = uint112(balance0);
        reserve1 = uint112(balance1);
        blockTimestampLast = blockTimestamp;
        emit Sync(reserve0, reserve1);
    }

_update:

  • check balance in range of uint112
  • update priceCulminative for both reserves
  • update reserves with balance
    function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
        address feeTo = IUniswapV2Factory(factory).feeTo();
        feeOn = feeTo != address(0);
        uint _kLast = kLast; // gas savings
        if (feeOn) {
            if (_kLast != 0) {
                uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                uint rootKLast = Math.sqrt(_kLast);
                if (rootK > rootKLast) {
                    uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                    uint denominator = rootK.mul(5).add(rootKLast);
                    uint liquidity = numerator / denominator;
                    if (liquidity > 0) _mint(feeTo, liquidity);
                }
            }
        } else if (_kLast != 0) {
            kLast = 0;
        }
    }

_mintFee: gives protocol charge fee to feeTo from Factory if it is set to do so(feeTo != address(0)).

    function mint(address to) external lock returns (uint liquidity) {
        (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
        uint balance0 = IERC20(token0).balanceOf(address(this));
        uint balance1 = IERC20(token1).balanceOf(address(this));
        uint amount0 = balance0.sub(_reserve0);
        uint amount1 = balance1.sub(_reserve1);

        bool feeOn = _mintFee(_reserve0, _reserve1);
        uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        if (_totalSupply == 0) {
            liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
           _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
        } else {
            liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
        }
        require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
        _mint(to, liquidity);

        _update(balance0, balance1, _reserve0, _reserve1);
        if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
        emit Mint(msg.sender, amount0, amount1);
    }

mint:

  • checks current balances of tokens
  • calculate added liquidity
  • give LP tokens to the LP(address to)
  • update reserves, price cumulatives, kLast(invarient)

totalSupply: total amount of LP tokens for this pair
balanceOf: returns the total amount of LP tokens owned by address
Sending tokens to address(0) makes the token unusable. It works as a penalty for the initial LP of the pair.

    function burn(address to) external lock returns (uint amount0, uint amount1) {
        (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
        address _token0 = token0;                                // gas savings
        address _token1 = token1;                                // gas savings
        uint balance0 = IERC20(_token0).balanceOf(address(this));
        uint balance1 = IERC20(_token1).balanceOf(address(this));
        uint liquidity = balanceOf[address(this)];

        bool feeOn = _mintFee(_reserve0, _reserve1);
        uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
        amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
        require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
        _burn(address(this), liquidity);
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        balance0 = IERC20(_token0).balanceOf(address(this));
        balance1 = IERC20(_token1).balanceOf(address(this));

        _update(balance0, balance1, _reserve0, _reserve1);
        if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
        emit Burn(msg.sender, amount0, amount1, to);
    }

burn:

  • burn LP token(return tokens back to LP(address to))
  • update reserves, price cumulatives, kLast(invarient)
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
        require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
        (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
        require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');

        uint balance0;
        uint balance1;
        { // scope for _token{0,1}, avoids stack too deep errors
        address _token0 = token0;
        address _token1 = token1;
        require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
        if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
        if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
        if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
        balance0 = IERC20(_token0).balanceOf(address(this));
        balance1 = IERC20(_token1).balanceOf(address(this));
        }
        uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
        uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
        require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
        { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
        uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
        uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
        require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
        }

        _update(balance0, balance1, _reserve0, _reserve1);
        emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
    }

swap:

  • transfer the amount of tokens from the pool to "address to" according to the amountOut.
  • checks if the traded tokens came in with amountIn
  • update reserves, price cumulatives, kLast(invarient)
    function skim(address to) external lock {
        address _token0 = token0; // gas savings
        address _token1 = token1; // gas savings
        _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
        _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
    }

skim: force actual pool balances to match reserves

    function sync() external lock {
        _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
    }

sync: update reserves up to date with actual balances

Pair Reference
UniswapV2Pair.sol

좋은 웹페이지 즐겨찾기