권 적 신경 망 (CNN) 의 훈련 및 코드 구현
17860 단어 딥 러 닝 연구
그리고 스 탠 퍼 드 대학의 심도 있 는 학습 과정:http://ufldl.stanford.edu/wiki/index.php/UFLDL튜 토리 얼
CNN 구조의 연결 은 가중치 공유 때문에 가중치 보다 훨씬 많다.CNN 은 데이터 구동 방식 을 통 해 입력 의 특징 을 추출 하 는 방법 으로 필 터 를 학습 했다.
전형 적 인 CNN 에 서 는 처음 몇 층 이 볼 륨 과 아래 샘플링 으로 교 체 된 다음 마지막 에 전체 연결 층 이 었 다.전체 연결 층 에 있 을 때 모든 2 차원 특징 맵 을 전체 연결 1 차원 입력 으로 바 꾸 었 습 니 다.
1. 전방 향 전파
이 네트워크 가 c 류 분류 문 제 를 처리 할 수 있다 고 가정 하면 모두 N 개의 훈련 샘플 이다.제곱 오차 대가 함수 정의:
2. 역방향 전파
매개 변 수 를 조정 하 다.
대량 경사도 하강 법 은 자주 사용 하 는 목표 함 수 를 최적화 하 는 방법 으로 목표 함수 에 대한 매개 변수 구 도 를 통 해 파 라 메 터 를 업데이트 하고 목표 함수 의 경사 가 떨 어 지 는 방향 이 최소 치 에 빠르게 접근 하 는 것 이다.그래서 매번 교체 할 때마다 다음 과 같은 공식 에 따라 맞아요.
역방향 전파 알고리즘 의 사고방식 은 다음 과 같다.
3. 권 적 신경 망 훈련 파라미터 의 차이 점
3.1 권 적층
CNN 에서 볼 륨 층 의 BP 업데이트.볼 륨 층 에서 상층 의 특징 맵 은 배 울 수 있 는 볼 륨 핵 에 의 해 볼 륨 을 한 다음 활성화 함 수 를 통 해 출력 특징 맵 을 얻 을 수 있 습 니 다.모든 출력 맵 은 여러 개의 입력 맵 을 조합 하여 전송 할 때 다음 과 같이 계산 할 수 있 습 니 다.
볼 륨 층 파라미터 에 대한 조정 은 잔 차 를 계산 할 때 볼 륨 층 과 하 샘플링 층 간 의 연결 을 보고 파 라 메 터 를 조정 할 때 상층 과 볼 륨 층 간 의 연결 을 본다.
3.2 샘플링 층
아래 샘플링 층 에 N 개의 특징 맵 을 입력 하면 N 개의 맵 을 출력 합 니 다. 출력 맵 마다 작 아 집 니 다.정방 향 전파 시 다음 과 같이 계산 합 니 다.
4. 권 적 신경 망 코드 실현
이 코드 는 MNIST 데 이 터 를 다운로드 해 야 하기 때문에 인터넷 에서 쉽게 찾 을 수 있 으 므 로 구체 적 으로 제시 하지 않 습 니 다.또한 CNN 구현 코드 는 여기에서 다운로드 할 수 있 습 니 다.https://github.com/rasmusbergpalm/DeepLearnToolbox
1、cnnapplygrads.m
function net = cnnapplygrads(net, opts)
for l = 2 : numel(net.layers)
if strcmp(net.layers{l}.type, 'c')
for j = 1 : numel(net.layers{l}.a)
for ii = 1 : numel(net.layers{l - 1}.a)
net.layers{l}.k{ii}{j} = net.layers{l}.k{ii}{j} - opts.alpha * net.layers{l}.dk{ii}{j};
end
net.layers{l}.b{j} = net.layers{l}.b{j} - opts.alpha * net.layers{l}.db{j};
end
end
end
net.ffW = net.ffW - opts.alpha * net.dffW;
net.ffb = net.ffb - opts.alpha * net.dffb;
end
2、cnnbp.m
function net = cnnbp(net, y)
n = numel(net.layers);
% error
net.e = net.o - y;
% loss function
net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);
%% backprop deltas
net.od = net.e .* (net.o .* (1 - net.o)); % output delta
net.fvd = (net.ffW' * net.od); % feature vector delta
if strcmp(net.layers{n}.type, 'c') % only conv layers has sigm function
net.fvd = net.fvd .* (net.fv .* (1 - net.fv));
end
% reshape feature vector deltas into output map style
sa = size(net.layers{n}.a{1});
fvnum = sa(1) * sa(2);
for j = 1 : numel(net.layers{n}.a)
net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));
end
for l = (n - 1) : -1 : 1
if strcmp(net.layers{l}.type, 'c')
for j = 1 : numel(net.layers{l}.a)
net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);
end
elseif strcmp(net.layers{l}.type, 's')
for i = 1 : numel(net.layers{l}.a)
z = zeros(size(net.layers{l}.a{1}));
for j = 1 : numel(net.layers{l + 1}.a)
z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');
end
net.layers{l}.d{i} = z;
end
end
end
%% calc gradients
for l = 2 : n
if strcmp(net.layers{l}.type, 'c')
for j = 1 : numel(net.layers{l}.a)
for i = 1 : numel(net.layers{l - 1}.a)
net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);
end
net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);
end
end
end
net.dffW = net.od * (net.fv)' / size(net.od, 2);
net.dffb = mean(net.od, 2);
function X = rot180(X)
X = flipdim(flipdim(X, 1), 2);
end
end
3、cnnff.m
function net = cnnff(net, x)
n = numel(net.layers);
net.layers{1}.a{1} = x;
inputmaps = 1;
for l = 2 : n % for each layer
if strcmp(net.layers{l}.type, 'c')
% !!below can probably be handled by insane matrix operations
for j = 1 : net.layers{l}.outputmaps % for each output map
% create temp output map
z = zeros(size(net.layers{l - 1}.a{1}) - [net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);
for i = 1 : inputmaps % for each input map
% convolve with corresponding kernel and add to temp output map
z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');
end
% add bias, pass through nonlinearity
net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});
end
% set number of input maps to this layers number of outputmaps
inputmaps = net.layers{l}.outputmaps;
elseif strcmp(net.layers{l}.type, 's')
% downsample
for j = 1 : inputmaps
z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid'); % !! replace with variable
net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
end
end
end
% concatenate all end layer feature maps into vector
net.fv = [];
for j = 1 : numel(net.layers{n}.a)
sa = size(net.layers{n}.a{j});
net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
end
% feedforward into output perceptrons
net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
end
4、cnnnumgradcheck.m
function cnnnumgradcheck(net, x, y)
epsilon = 1e-4;
er = 1e-8;
n = numel(net.layers);
for j = 1 : numel(net.ffb)
net_m = net; net_p = net;
net_p.ffb(j) = net_m.ffb(j) + epsilon;
net_m.ffb(j) = net_m.ffb(j) - epsilon;
net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
d = (net_p.L - net_m.L) / (2 * epsilon);
e = abs(d - net.dffb(j));
if e > er
error('numerical gradient checking failed');
end
end
for i = 1 : size(net.ffW, 1)
for u = 1 : size(net.ffW, 2)
net_m = net; net_p = net;
net_p.ffW(i, u) = net_m.ffW(i, u) + epsilon;
net_m.ffW(i, u) = net_m.ffW(i, u) - epsilon;
net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
d = (net_p.L - net_m.L) / (2 * epsilon);
e = abs(d - net.dffW(i, u));
if e > er
error('numerical gradient checking failed');
end
end
end
for l = n : -1 : 2
if strcmp(net.layers{l}.type, 'c')
for j = 1 : numel(net.layers{l}.a)
net_m = net; net_p = net;
net_p.layers{l}.b{j} = net_m.layers{l}.b{j} + epsilon;
net_m.layers{l}.b{j} = net_m.layers{l}.b{j} - epsilon;
net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
d = (net_p.L - net_m.L) / (2 * epsilon);
e = abs(d - net.layers{l}.db{j});
if e > er
error('numerical gradient checking failed');
end
for i = 1 : numel(net.layers{l - 1}.a)
for u = 1 : size(net.layers{l}.k{i}{j}, 1)
for v = 1 : size(net.layers{l}.k{i}{j}, 2)
net_m = net; net_p = net;
net_p.layers{l}.k{i}{j}(u, v) = net_p.layers{l}.k{i}{j}(u, v) + epsilon;
net_m.layers{l}.k{i}{j}(u, v) = net_m.layers{l}.k{i}{j}(u, v) - epsilon;
net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
d = (net_p.L - net_m.L) / (2 * epsilon);
e = abs(d - net.layers{l}.dk{i}{j}(u, v));
if e > er
error('numerical gradient checking failed');
end
end
end
end
end
elseif strcmp(net.layers{l}.type, 's')
% for j = 1 : numel(net.layers{l}.a)
% net_m = net; net_p = net;
% net_p.layers{l}.b{j} = net_m.layers{l}.b{j} + epsilon;
% net_m.layers{l}.b{j} = net_m.layers{l}.b{j} - epsilon;
% net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
% net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
% d = (net_p.L - net_m.L) / (2 * epsilon);
% e = abs(d - net.layers{l}.db{j});
% if e > er
% error('numerical gradient checking failed');
% end
% end
end
end
% keyboard
end
5、cnnsetup.m
function net = cnnsetup(net, x, y)
assert(~isOctave() || compare_versions(OCTAVE_VERSION, '3.8.0', '>='), ['Octave 3.8.0 or greater is required for CNNs as there is a bug in convolution in previous versions. See http://savannah.gnu.org/bugs/?39314. Your version is ' myOctaveVersion]);
inputmaps = 1;
mapsize = size(squeeze(x(:, :, 1)));
for l = 1 : numel(net.layers) % layer
if strcmp(net.layers{l}.type, 's')
mapsize = mapsize / net.layers{l}.scale;
assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size must be integer. Actual: ' num2str(mapsize)]);
for j = 1 : inputmaps
net.layers{l}.b{j} = 0;
end
end
if strcmp(net.layers{l}.type, 'c')
mapsize = mapsize - net.layers{l}.kernelsize + 1;
fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;
for j = 1 : net.layers{l}.outputmaps % output map
fan_in = inputmaps * net.layers{l}.kernelsize ^ 2;
for i = 1 : inputmaps % input map
net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));
end
net.layers{l}.b{j} = 0;
end
inputmaps = net.layers{l}.outputmaps;
end
end
% 'onum' is the number of labels, that's why it is calculated using size(y, 1). If you have 20 labels so the output of the network will be 20 neurons.
% 'fvnum' is the number of output neurons at the last layer, the layer just before the output layer.
% 'ffb' is the biases of the output neurons.
% 'ffW' is the weights between the last layer and the output neurons. Note that the last layer is fully connected to the output layer, that's why the size of the weights is (onum * fvnum)
fvnum = prod(mapsize) * inputmaps;
onum = size(y, 1);
net.ffb = zeros(onum, 1);
net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));
end
6、cnntest.m function [er, bad] = cnntest(net, x, y)
% feedforward
net = cnnff(net, x);
[~, h] = max(net.o);
[~, a] = max(y);
bad = find(h ~= a);
er = numel(bad) / size(y, 2);
end
7、cnntrain.m function net = cnntrain(net, x, y, opts)
m = size(x, 3);
numbatches = m / opts.batchsize;
if rem(numbatches, 1) ~= 0
error('numbatches not integer');
end
net.rL = [];
for i = 1 : opts.numepochs
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs)]);
tic;
kk = randperm(m);
for l = 1 : numbatches
batch_x = x(:, :, kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));
batch_y = y(:, kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));
net = cnnff(net, batch_x);
net = cnnbp(net, batch_y);
net = cnnapplygrads(net, opts);
if isempty(net.rL)
net.rL(1) = net.L;
end
net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.L;
end
toc;
end
end
8、test_example_CNN.m function test_example_CNN
load mnist_uint8;
train_x = double(reshape(train_x',28,28,60000))/255;
test_x = double(reshape(test_x',28,28,10000))/255;
train_y = double(train_y');
test_y = double(test_y');
%% ex1 Train a 6c-2s-12c-2s Convolutional neural network
%will run 1 epoch in about 200 second and get around 11% error.
%With 100 epochs you'll get around 1.2% error
rand('state',0)
cnn.layers = {
struct('type', 'i') %input layer
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %sub sampling layer
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %subsampling layer
};
opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;
cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
[er, bad] = cnntest(cnn, test_x, test_y);
er
%plot mean squared error
figure; plot(cnn.rL);
assert(er<0.12, 'Too big error');
주: 또한 CNN 의 구체 적 인 MATLAB 실현 코드 와 상세 한 설명 은 zouxy 09 의 블 로 그 를 참조 하 시기 바 랍 니 다.http://blog.csdn.net/zouxy09/article/details/9993743/ 이 작가 의 블 로그 에는 상세 하 게 설명 되 어 있 으 며, 또 저 자 는 깊이 있 는 학습 에 관 한 필 기 를 많이 썼 으 며, 모두 잘 썼 으 며, 이에 경 배 와 감 사 를 표 합 니 다!