spark 고급 데이터 분석 - 네트워크 트 래 픽 이상 검 측 (실전 업그레이드)
59905 단어 빅 데이터 - 스파크 밀리 브
package internet
import org.apache.spark.mllib.clustering.{KMeansModel, KMeans}
import org.apache.spark.mllib.linalg.{Vectors,Vector}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkContext, SparkConf}
/**
* Created by on 2016/7/24.
*/
object CheckAll {
def main(args: Array[String]) {
//
val conf = new SparkConf().setAppName("CheckAll").setMaster("local")
val sc= new SparkContext(conf)
val HDFS_DATA_PATH = "hdfs://node1:9000/user/spark/sparkLearning/cluster/kddcup.data"
val rawData = sc.textFile(HDFS_DATA_PATH)
/** , **/
// clusteringTake1(rawData)
/** k **/
// clusteringTake2(rawData)
// clusteringTake3(rawData)
// clusteringTake4(rawData)
// clusteringTake5(rawData)
/** R **/
/** **/
var beg = System.currentTimeMillis()
anomalies(rawData)
var end = System.currentTimeMillis()
println(" :" + (end - beg) / 1000 + "s")
}
//Clustering,Task1
def clusteringTake1(rawData: RDD[String]) = {
// ,
rawData.map(_.split(",").last).countByValue().toSeq.sortBy(_._2).reverse.foreach(println)
val labelsAndData = rawData.map {
line =>
// csv , buffer,
val buffer = line.split(",").toBuffer
// 1
buffer.remove(1, 3)
//
val label = buffer.remove(buffer.length - 1)
// (Double )
val vector = Vectors.dense(buffer.map(_.toDouble).toArray)
//
(label, vector)
}
/**
* labelsAndData => data ?
* 1、k ( )
* 2、 data RDD
* 3、 2 RDD values , ,
*/
//
val data = labelsAndData.values.cache()
// Kmeans
val kmeans = new KMeans()
// KMeansModel
val model = kmeans.run(data)
//
model.clusterCenters.foreach(println)
val clusterLabelCount = labelsAndData.map {
case (label, datum) =>
// datum cluster
val cluster = model.predict(datum)
// -
(cluster, label)
}.countByValue()
// - ,
clusterLabelCount.toSeq.sorted.foreach {
case ((cluster, label), count) =>
println(f"$cluster%1s$label%18s$count%8s")
}
data.unpersist()
}
/**
*
* a.toArray.zip(b.toArray) " "
* map(p => p._1 - p._2) " "
* map(d => d*d).sum " "
* math.sqrt() " "
* @param a
* @param b
* @return
*/
def distance(a: Vector, b: Vector) =
math.sqrt(a.toArray.zip(b.toArray).map(p => p._1 - p._2).map(d => d * d).sum)
/**
* model
* KMeansModel.predict KMeans findCloest
* @param datum
* @param model
* @return
*/
def distToCenter(datum: Vector, model: KMeansModel) = {
// datum cluster
val cluster = model.predict(datum)
//
val center = model.clusterCenters(cluster)
//
distance(center, datum)
}
/**
*
* @param data
* @param k
* @return
*/
def clusteringScore(data: RDD[Vector], k: Int): Double = {
val kmeans = new KMeans()
// k
kmeans.setK(k)
// KMeansModel
val model = kmeans.run(data)
// k model ,mean()
data.map(datum => distToCenter(datum, model)).mean()
}
/**
*
* @param data
* @param k
* @param run
* @param epsilon
* @return
*/
def clusteringScore2(data: RDD[Vector], k: Int, run: Int, epsilon: Double): Double = {
val kmeans = new KMeans()
kmeans.setK(k)
// k
kmeans.setRuns(run)
//
kmeans.setEpsilon(epsilon)
val model = kmeans.run(data)
data.map(datum => distToCenter(datum, model)).mean()
}
//Clustering,Take2
def clusteringTake2(rawData: RDD[String]): Unit ={
val data = rawData.map {
line =>
val buffer = line.split(",").toBuffer
buffer.remove(1, 3)
buffer.remove(buffer.length - 1)
Vectors.dense(buffer.map(_.toDouble).toArray)
}.cache()
val run = 10
val epsilon = 1.0e-4
// (5,30) 5 k
(5 to 30 by 5).map(k => (k, clusteringScore(data, k))).foreach(println)
// (20,120) 10 k
(30 to 100 by 10).par.map(k => (k, clusteringScore2(data, k, run, epsilon))).foreach(println)
data.unpersist()
}
/**
* R HDFS
* @param rawData
* @param k
* @param run
* @param epsilon
*/
def visualizationInR(rawData: RDD[String], k: Int, run: Int, epsilon: Double): Unit ={
val data = rawData.map {
line =>
val buffer = line.split(",").toBuffer
buffer.remove(1, 3)
buffer.remove(buffer.length - 1)
Vectors.dense(buffer.map(_.toDouble).toArray)
}.cache()
val kmeans = new KMeans()
kmeans.setK(k)
kmeans.setRuns(run)
kmeans.setEpsilon(epsilon)
val model = kmeans.run(data)
val sample = data.map(
datum =>
model.predict(datum) + "," + datum.toArray.mkString(",")
).sample(false, 0.05) // 5%
sample.saveAsTextFile("hdfs://nodel:9000/user/spark/R/sample")
data.unpersist()
}
/**
*
* @param data
* @return
*/
def buildNormalizationFunction(data: RDD[Vector]): (Vector => Vector) = {
// Array
val dataAsArray = data.map(_.toArray)
//
val numCols = dataAsArray.first().length
//
val n = dataAsArray.count()
//
val sums = dataAsArray.reduce((a, b) => a.zip(b).map(t => t._1 + t._2))
// RDD
val sumSquares = dataAsArray.aggregate(new Array[Double](numCols))(
(a, b) => a.zip(b).map(t => t._1 + t._2 * t._2),
(a, b) => a.zip(b).map(t => t._1 + t._2)
)
/** zip pair 。
* , 。
*
*/
val stdevs = sumSquares.zip(sums).map {
case (sumSq, sum) => math.sqrt(n * sumSq - sum * sum) / n
}
val means = sums.map(_ / n)
(datum : Vector) => {
val normalizedArray = (datum.toArray, means, stdevs).zipped.map(
(value, mean, stdev) =>
if(stdev <= 0) (value- mean) else (value - mean) /stdev
)
Vectors.dense(normalizedArray)
}
}
//clustering,Task3
def clusteringTake3(rawData: RDD[String]): Unit ={
val data = rawData.map { line =>
val buffer = line.split(',').toBuffer
buffer.remove(1, 3)
buffer.remove(buffer.length - 1)
Vectors.dense(buffer.map(_.toDouble).toArray)
}
val run = 10
val epsilon = 1.0e-4
val normalizedData = data.map(buildNormalizationFunction(data)).cache()
(60 to 120 by 10).par.map(
k => (k, clusteringScore2(normalizedData, k, run, epsilon))
).toList.foreach(println)
normalizedData.unpersist()
}
/**
* one-hot
* @param rawData
* @return
*/
def buildCategoricalAndLabelFunction(rawData: RDD[String]): (String => (String, Vector)) = {
val splitData = rawData.map(_.split(","))
//
val protocols = splitData.map(_(1)).distinct().collect().zipWithIndex.toMap // 1,0,0
val services = splitData.map(_(2)).distinct().collect().zipWithIndex.toMap // 0,1,0
val tcpStates = splitData.map(_(3)).distinct().collect().zipWithIndex.toMap // 0,0,1
//
(line: String) => {
val buffer = line.split(",").toBuffer
val protocol = buffer.remove(1)
val service = buffer.remove(1)
val tcpState = buffer.remove(1)
val label = buffer.remove(buffer.length - 1)
val vector = buffer.map(_.toDouble)
val newProtocolFeatures = new Array[Double](protocols.size)
newProtocolFeatures(protocols(protocol)) = 1.0
val newServiceFeatures = new Array[Double](services.size)
newServiceFeatures(services(service)) = 1.0
val newTcpStateFeatures = new Array[Double](tcpStates.size)
newTcpStateFeatures(tcpStates(tcpState)) = 1.0
vector.insertAll(1, newTcpStateFeatures)
vector.insertAll(1, newServiceFeatures)
vector.insertAll(1, newProtocolFeatures)
(label, Vectors.dense(vector.toArray))
}
}
//Clustering,Task4
def clusteringTake4(rawData: RDD[String]): Unit ={
val paraseFunction = buildCategoricalAndLabelFunction(rawData)
val data = rawData.map(paraseFunction).values
val normalizedData = data.map(buildNormalizationFunction(data)).cache()
val run = 10
val epsilon = 1.0e-4
(80 to 160 by 10).map(
k=> (k, clusteringScore2(normalizedData, k, run, epsilon))
).toList.foreach(println)
normalizedData.unpersist()
}
//Clustering, Task5
/**
* ,
* @param counts
* @return
*/
def entropy(counts: Iterable[Int]) = {
val values = counts.filter(_ > 0)
val n: Double = values.sum
values.map {
v =>
val p = v / n
-p * math.log(p)
}.sum
}
/**
*
* @param normalizedLabelsAndData
* @param k
* @param run
* @param epsilon
* @return
*/
def clusteringScore3(normalizedLabelsAndData: RDD[(String, Vector)], k: Int, run: Int, epsilon: Double) = {
val kmeans = new KMeans()
kmeans.setK(k)
kmeans.setRuns(run)
kmeans.setEpsilon(epsilon)
// KMeansModel
val model = kmeans.run(normalizedLabelsAndData.values)
//
val labelAndClusters = normalizedLabelsAndData.mapValues(model.predict)
// RDD[(String, Vector)] => RDD[(String, Vector)], swap Keys / Values,
val clustersAndLabels = labelAndClusters.map(_.swap)
//
val labelsInCluster = clustersAndLabels.groupByKey().values
// (label),
val labelCounts = labelsInCluster.map(_.groupBy(l => l).map(_._2.size))
// ,
val n = normalizedLabelsAndData.count()
//
labelCounts.map(m => m.sum * entropy(m)).sum() / n
}
def clusteringTake5(rawData: RDD[String]): Unit ={
val parseFunction = buildCategoricalAndLabelFunction(rawData)
val labelAndData = rawData.map(parseFunction)
val normalizedLabelsAndData = labelAndData.mapValues(buildNormalizationFunction(labelAndData.values)).cache()
val run = 10
val epsilon = 1.0e-4
(80 to 160 by 10).map(
k => (k, clusteringScore3(normalizedLabelsAndData, k, run, epsilon))
).toList.foreach(println)
normalizedLabelsAndData.unpersist()
}
//Detect anomalies( )
def bulidAnomalyDetector(data: RDD[Vector], normalizeFunction: (Vector => Vector)): (Vector => Boolean) = {
val normalizedData = data.map(normalizeFunction)
normalizedData.cache()
val kmeans = new KMeans()
kmeans.setK(150)
kmeans.setRuns(10)
kmeans.setEpsilon(1.0e-6)
val model = kmeans.run(normalizedData)
normalizedData.unpersist()
//
val distances = normalizedData.map(datum => distToCenter(datum, model))
// 100
val threshold = distances.top(100).last
// ,
(datum: Vector) => distToCenter(normalizeFunction(datum), model) > threshold
}
/**
*
* @param rawData
*/
def anomalies(rawData: RDD[String]) = {
val parseFunction = buildCategoricalAndLabelFunction(rawData)
val originalAndData = rawData.map(line => (line, parseFunction(line)._2))
val data = originalAndData.values
val normalizeFunction = buildNormalizationFunction(data)
val anomalyDetector = bulidAnomalyDetector(data, normalizeFunction)
val anomalies = originalAndData.filter {
case (original, datum) => anomalyDetector(datum)
}.keys
// 10
anomalies.take(10).foreach(println)
}
}
좀 난잡 하 게 썼 지만, 전부 스스로 봉 했다.운행 해도 괜 찮 습 니 다. 여러분 이 참고 하여 공부 하 실 수 있 도록 제 가 쓴 주석 에 관심 을 가 져 주시 면 됩 니 다.
힘 들 어 죽 겠 어 요. 제 컴퓨터 가 안 돼 서 그런 지 1G 데 이 터 를 계산 하 는 데 이렇게 오래 걸 렸 어 요. 지금 제 가 이상 검 측 부분 운행 결 과 를 보 여 드릴 게 요.
16/07/24 22:48:18 INFO Executor: Running task 0.0 in stage 65.0 (TID 385) 16/07/24 22:48:18 INFO HadoopRDD: Input split: hdfs://node1:9000/user/spark/sparkLearning/cluster/kddcup.data:0+134217728 16/07/24 22:48:30 INFO Executor: Finished task 0.0 in stage 65.0 (TID 385). 3611 bytes result sent to driver 16/07/24 22:48:30 INFO TaskSetManager: Finished task 0.0 in stage 65.0 (TID 385) in 11049 ms on localhost (1/1) 9,tcp,telnet,SF,307,2374,0,0,1,0,0,1,0,1,0,1,3,1,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,69,4,0.03,0.04,0.01,0.75,0.00,0.00,0.00,0.00,normal. 16/07/24 22:48:30 INFO TaskSchedulerImpl: Removed TaskSet 65.0, whose tasks have all completed, from pool 16/07/24 22:48:30 INFO DAGScheduler: ResultStage 65 (take at CheckAll.scala:413) finished in 11.049 s 16/07/24 22:48:30 INFO DAGScheduler: Job 41 finished: take at CheckAll.scala:413, took 11.052917 s 0,tcp,http,S1,299,26280,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,15,16,0.07,0.06,0.00,0.00,1.00,0.00,0.12,231,255,1.00,0.00,0.00,0.01,0.01,0.01,0.00,0.00,normal. 0,tcp,telnet,S1,2895,14208,0,0,0,0,0,1,0,0,0,0,13,0,0,0,0,0,1,1,1.00,1.00,0.00,0.00,1.00,0.00,0.00,21,2,0.10,0.10,0.05,0.00,0.05,0.50,0.00,0.00,normal. 23,tcp,telnet,SF,104,276,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,2,1.00,0.00,1.00,1.00,0.00,0.00,0.00,0.00,guess_passwd. 13,tcp,telnet,SF,246,11938,0,0,0,0,4,1,0,0,0,0,2,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,89,2,0.02,0.04,0.01,0.00,0.00,0.00,0.00,0.00,normal. 12249,tcp,telnet,SF,3043,44466,0,0,0,1,0,1,13,1,0,0,12,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,61,8,0.13,0.05,0.02,0.00,0.00,0.00,0.00,0.00,normal. 60,tcp,telnet,S3,125,179,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1.00,1.00,0.00,0.00,1.00,0.00,0.00,1,1,1.00,0.00,1.00,0.00,1.00,1.00,0.00,0.00,guess_passwd. 60,tcp,telnet,S3,126,179,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,2,2,0.50,0.50,0.50,0.50,1.00,0.00,0.00,23,23,1.00,0.00,0.04,0.00,0.09,0.09,0.91,0.91,guess_passwd. 583,tcp,telnet,SF,848,25323,0,0,0,1,0,1,107,1,1,100,1,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,1,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,normal. 11447,tcp,telnet,SF,3131,45415,0,0,0,1,0,1,0,1,0,0,15,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,100,10,0.09,0.72,0.01,0.20,0.01,0.10,0.69,0.20,사용 시간: 4602 s 16 / 07 / 24 22: 48: 30 INFO SparkContext: Invoking stop () from shutdown hook 16 / 07 / 24 22: 48: 30 INFO SparkUI: Stopped Spark web UI athttp://192.168.1.102:4040 16/07/24 22:48:30 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 16/07/24 22:48:30 INFO MemoryStore: MemoryStore cleared 16/07/24 22:48:30 INFO BlockManager: BlockManager stopped 16/07/24 22:48:30 INFO BlockManagerMaster: BlockManagerMaster stopped 16/07/24 22:48:30 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 16/07/24 22:48:30 INFO SparkContext: Successfully stopped SparkContext 16/07/24 22:48:30 INFO ShutdownHookManager: Shutdown hook called 16/07/24 22:48:30 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-1ab0ec11-672d-4778-9ae8-2050f44a5f91 16/07/24 22:48:30 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 16/07/24 22:48:30 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports. Process finished with exit code 0
운행 결과 의 열 가지 데 이 터 를 나 는 이미 빨간색 으로 표시 하 였 으 니, 여러분 주의 하 세 요. 나 는 한 시간 이 넘 을 까 봐 두 렵 습 니 다.