대소 수 판단 과 소인 자 분해 (miller - rabin, Pollard rho 알고리즘)

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;


//****************************************************************
// Miller_Rabin         
//   ,       <2^63  
//****************************************************************
const int S=20;//        ,S  ,      


//   (a*b)%c.   a,b  long long  ,         
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
    a%=c;
    b%=c;
    long long ret=0;
    while(b)
    {
        if(b&1){ret+=a;ret%=c;}
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}



//    x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}





// a  ,n-1=x*2^t      a^(n-1)=1(mod n)    n     
//       true,     false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//  
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()      
//     true.(      ,     )
//    false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//  
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;//rand()  stdlib.h   
        if(check(a,n,x,t))
            return false;//  
    }
    return true;
}


//************************************************
//pollard_rho          
//************************************************
long long factor[100];//       (        )
int tol;//      。     0  

long long gcd(long long a,long long b)
{
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
// n       
void findfac(long long n)
{
    if(Miller_Rabin(n))//  
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

int main()
{
    //srand(time(NULL));//  time.h   //POJ G++      
    long long n;
    while(scanf("%I64d",&n)!=EOF)
    {
        tol=0;
        findfac(n);
        for(int i=0;i<tol;i++)printf("%I64d ",factor[i]);
        printf("
"); if(Miller_Rabin(n))printf("Yes
"); else printf("No
"); } return 0; }

좋은 웹페이지 즐겨찾기