재귀
부분 집합 합계
TC: O(2^n) as we have to two choices at every index of the arr either to take that index or not
//User function Template for Java//User function Template for Java
class Solution{
ArrayList<Integer> subsetSums(ArrayList<Integer> arr, int N){
// code here
ArrayList<Integer> list = new ArrayList<>();
getSum(N-1,arr,0,list);
return list;
}
public void getSum(int index,List<Integer> arr,int sum,ArrayList<Integer> list){
if(index<0){
list.add(sum);
return ;
}
//take
sum+=arr.get(index);
getSum(index-1,arr,sum,list);
sum-=arr.get(index);
getSum(index-1,arr,sum,list);
//donttake
}
}
부분집합 II
Tc: O(2^n)*k, where k is the size of the subsets that you would need to put into list (as putting subsets in list is not constant hence assuming that the average length of the subset l is k)
import java.util.* ;
import java.io.*;
public class Solution {
public static ArrayList<ArrayList<Integer>> uniqueSubsets(int n, int arr[]) {
Arrays.sort(arr);
ArrayList<ArrayList<Integer>> list= new ArrayList<>();
getUnique(0,arr,new ArrayList<>(),list);
return list;
}
public static void getUnique(int index,int arr[],ArrayList<Integer> l,ArrayList<ArrayList<Integer>> list){
list.add(new ArrayList<>(l));
for(int i = index;i<arr.length;i++){
if( index!=i && arr[i] == arr[i-1]) continue;
l.add(arr[i]);
getUnique(i+1,arr,l,list);
l.remove(l.size()-1);
}
}
}
조합 합계, 즉 부분 집합 합계 I의 개념 사용
Tc: O(2^n)*k where exponential for using recursion and for every call stack we will be adding subset(of assumed average length of k) in to list
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> findSubsetsThatSumToK(ArrayList<Integer> arr, int n, int k)
{
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getSums(0,arr,new ArrayList<>(),k,list);
return list;
}
public static void getSums(int index,ArrayList<Integer> arr,ArrayList<Integer> l,int target,ArrayList<ArrayList<Integer>> list){
if(index>=arr.size()){
if(target==0) list.add(new ArrayList<>(l));
return;
}
//take
l.add(arr.get(index));
getSums(index+1,arr, l,target-arr.get(index),list);
l.remove(l.size()-1);
//dontTake
getSums(index+1,arr,l,target,list);
}
}
조합 합계 II, 즉 하위 집합 합계 II의 개념 사용
TC: O(2^n) *K, same as combination I
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> combinationSum2(ArrayList<Integer> arr, int n, int target)
{
Collections.sort(arr);
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getUniqueSubsetEqualsTarget(0,arr,target,new ArrayList<>(),list);
return list;
}
public static void getUniqueSubsetEqualsTarget(int index,ArrayList<Integer> arr,int target,ArrayList<Integer> l,ArrayList<ArrayList<Integer>> list){
if(target==0) list.add(new ArrayList<>(l));
for(int i = index;i<arr.size();i++){
if(i!=index && arr.get(i)==arr.get(i-1)) continue;
if(arr.get(i)<=target){
l.add(arr.get(i));
getUniqueSubsetEqualsTarget(i+1,arr,target-arr.get(i),l,list);
l.remove(l.size()-1);
}
}
}
}
회문 파티셔닝
TC: O(2^n)*k because of the same approach as Combination sum
import java.util.* ;
import java.io.*;
public class Solution {
public static List<List<String>> partition(String s) {
// Write your code here.
List<List<String>> list = new ArrayList<>();
getAllPalindromicSubstrings(0,s,new ArrayList<>(),list);
return list;
}
public static void getAllPalindromicSubstrings(int index, String s,
List<String> l,List<List<String>> list){
if(index>=s.length()){
list.add(new ArrayList<>(l));
return;
}
for(int i = index;i<s.length();i++){
if(!isPalindrome(index,i,s)) continue;
l.add(s.substring(index,i+1));
getAllPalindromicSubstrings(i+1,s,l,list);
l.remove(l.size()-1);
}
}
public static boolean isPalindrome(int start,int end, String s){
while(start<=end){
if(s.charAt(start++)!=s.charAt(end--)) return false;
}
return true;
}
}
K번째 순열 시퀀스
TC: O(2^n)
import java.util.*;
public class Solution {
static ArrayList<Integer> l;
static int count;
public static String kthPermutation(int n, int k) {
l = null;
count = 0;
int arr[] = new int[n];
for(int i =0;i<arr.length;i++){
arr[i] = i+1;
}
boolean check[] = new boolean[arr.length];
String s = "";
if(getAllPermutations(arr,new ArrayList<>(), check, k))
for(Integer i : l){
s+=i;
}
return s;
}
public static boolean getAllPermutations(int[] arr, List<Integer> list, boolean[] check, int k){
if(list.size()==arr.length){
count++;
if(count ==k){
l = new ArrayList<>(list);
return true;
}
}
for(int i =0;i<arr.length;i++){
if(!check[i]){
check[i] = true;
list.add(arr[i]);
if(getAllPermutations(arr,list,check,k)) return true;
list.remove(list.size()-1);
check[i] = false;
}
}
return false;
}
}
Reference
이 문제에 관하여(재귀), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://dev.to/prashantrmishra/recursion-4301
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
//User function Template for Java//User function Template for Java
class Solution{
ArrayList<Integer> subsetSums(ArrayList<Integer> arr, int N){
// code here
ArrayList<Integer> list = new ArrayList<>();
getSum(N-1,arr,0,list);
return list;
}
public void getSum(int index,List<Integer> arr,int sum,ArrayList<Integer> list){
if(index<0){
list.add(sum);
return ;
}
//take
sum+=arr.get(index);
getSum(index-1,arr,sum,list);
sum-=arr.get(index);
getSum(index-1,arr,sum,list);
//donttake
}
}
Tc: O(2^n)*k, where k is the size of the subsets that you would need to put into list (as putting subsets in list is not constant hence assuming that the average length of the subset l is k)
import java.util.* ;
import java.io.*;
public class Solution {
public static ArrayList<ArrayList<Integer>> uniqueSubsets(int n, int arr[]) {
Arrays.sort(arr);
ArrayList<ArrayList<Integer>> list= new ArrayList<>();
getUnique(0,arr,new ArrayList<>(),list);
return list;
}
public static void getUnique(int index,int arr[],ArrayList<Integer> l,ArrayList<ArrayList<Integer>> list){
list.add(new ArrayList<>(l));
for(int i = index;i<arr.length;i++){
if( index!=i && arr[i] == arr[i-1]) continue;
l.add(arr[i]);
getUnique(i+1,arr,l,list);
l.remove(l.size()-1);
}
}
}
조합 합계, 즉 부분 집합 합계 I의 개념 사용
Tc: O(2^n)*k where exponential for using recursion and for every call stack we will be adding subset(of assumed average length of k) in to list
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> findSubsetsThatSumToK(ArrayList<Integer> arr, int n, int k)
{
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getSums(0,arr,new ArrayList<>(),k,list);
return list;
}
public static void getSums(int index,ArrayList<Integer> arr,ArrayList<Integer> l,int target,ArrayList<ArrayList<Integer>> list){
if(index>=arr.size()){
if(target==0) list.add(new ArrayList<>(l));
return;
}
//take
l.add(arr.get(index));
getSums(index+1,arr, l,target-arr.get(index),list);
l.remove(l.size()-1);
//dontTake
getSums(index+1,arr,l,target,list);
}
}
조합 합계 II, 즉 하위 집합 합계 II의 개념 사용
TC: O(2^n) *K, same as combination I
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> combinationSum2(ArrayList<Integer> arr, int n, int target)
{
Collections.sort(arr);
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getUniqueSubsetEqualsTarget(0,arr,target,new ArrayList<>(),list);
return list;
}
public static void getUniqueSubsetEqualsTarget(int index,ArrayList<Integer> arr,int target,ArrayList<Integer> l,ArrayList<ArrayList<Integer>> list){
if(target==0) list.add(new ArrayList<>(l));
for(int i = index;i<arr.size();i++){
if(i!=index && arr.get(i)==arr.get(i-1)) continue;
if(arr.get(i)<=target){
l.add(arr.get(i));
getUniqueSubsetEqualsTarget(i+1,arr,target-arr.get(i),l,list);
l.remove(l.size()-1);
}
}
}
}
회문 파티셔닝
TC: O(2^n)*k because of the same approach as Combination sum
import java.util.* ;
import java.io.*;
public class Solution {
public static List<List<String>> partition(String s) {
// Write your code here.
List<List<String>> list = new ArrayList<>();
getAllPalindromicSubstrings(0,s,new ArrayList<>(),list);
return list;
}
public static void getAllPalindromicSubstrings(int index, String s,
List<String> l,List<List<String>> list){
if(index>=s.length()){
list.add(new ArrayList<>(l));
return;
}
for(int i = index;i<s.length();i++){
if(!isPalindrome(index,i,s)) continue;
l.add(s.substring(index,i+1));
getAllPalindromicSubstrings(i+1,s,l,list);
l.remove(l.size()-1);
}
}
public static boolean isPalindrome(int start,int end, String s){
while(start<=end){
if(s.charAt(start++)!=s.charAt(end--)) return false;
}
return true;
}
}
K번째 순열 시퀀스
TC: O(2^n)
import java.util.*;
public class Solution {
static ArrayList<Integer> l;
static int count;
public static String kthPermutation(int n, int k) {
l = null;
count = 0;
int arr[] = new int[n];
for(int i =0;i<arr.length;i++){
arr[i] = i+1;
}
boolean check[] = new boolean[arr.length];
String s = "";
if(getAllPermutations(arr,new ArrayList<>(), check, k))
for(Integer i : l){
s+=i;
}
return s;
}
public static boolean getAllPermutations(int[] arr, List<Integer> list, boolean[] check, int k){
if(list.size()==arr.length){
count++;
if(count ==k){
l = new ArrayList<>(list);
return true;
}
}
for(int i =0;i<arr.length;i++){
if(!check[i]){
check[i] = true;
list.add(arr[i]);
if(getAllPermutations(arr,list,check,k)) return true;
list.remove(list.size()-1);
check[i] = false;
}
}
return false;
}
}
Reference
이 문제에 관하여(재귀), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://dev.to/prashantrmishra/recursion-4301
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> findSubsetsThatSumToK(ArrayList<Integer> arr, int n, int k)
{
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getSums(0,arr,new ArrayList<>(),k,list);
return list;
}
public static void getSums(int index,ArrayList<Integer> arr,ArrayList<Integer> l,int target,ArrayList<ArrayList<Integer>> list){
if(index>=arr.size()){
if(target==0) list.add(new ArrayList<>(l));
return;
}
//take
l.add(arr.get(index));
getSums(index+1,arr, l,target-arr.get(index),list);
l.remove(l.size()-1);
//dontTake
getSums(index+1,arr,l,target,list);
}
}
TC: O(2^n) *K, same as combination I
import java.util.*;
public class Solution
{
public static ArrayList<ArrayList<Integer>> combinationSum2(ArrayList<Integer> arr, int n, int target)
{
Collections.sort(arr);
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
getUniqueSubsetEqualsTarget(0,arr,target,new ArrayList<>(),list);
return list;
}
public static void getUniqueSubsetEqualsTarget(int index,ArrayList<Integer> arr,int target,ArrayList<Integer> l,ArrayList<ArrayList<Integer>> list){
if(target==0) list.add(new ArrayList<>(l));
for(int i = index;i<arr.size();i++){
if(i!=index && arr.get(i)==arr.get(i-1)) continue;
if(arr.get(i)<=target){
l.add(arr.get(i));
getUniqueSubsetEqualsTarget(i+1,arr,target-arr.get(i),l,list);
l.remove(l.size()-1);
}
}
}
}
회문 파티셔닝
TC: O(2^n)*k because of the same approach as Combination sum
import java.util.* ;
import java.io.*;
public class Solution {
public static List<List<String>> partition(String s) {
// Write your code here.
List<List<String>> list = new ArrayList<>();
getAllPalindromicSubstrings(0,s,new ArrayList<>(),list);
return list;
}
public static void getAllPalindromicSubstrings(int index, String s,
List<String> l,List<List<String>> list){
if(index>=s.length()){
list.add(new ArrayList<>(l));
return;
}
for(int i = index;i<s.length();i++){
if(!isPalindrome(index,i,s)) continue;
l.add(s.substring(index,i+1));
getAllPalindromicSubstrings(i+1,s,l,list);
l.remove(l.size()-1);
}
}
public static boolean isPalindrome(int start,int end, String s){
while(start<=end){
if(s.charAt(start++)!=s.charAt(end--)) return false;
}
return true;
}
}
K번째 순열 시퀀스
TC: O(2^n)
import java.util.*;
public class Solution {
static ArrayList<Integer> l;
static int count;
public static String kthPermutation(int n, int k) {
l = null;
count = 0;
int arr[] = new int[n];
for(int i =0;i<arr.length;i++){
arr[i] = i+1;
}
boolean check[] = new boolean[arr.length];
String s = "";
if(getAllPermutations(arr,new ArrayList<>(), check, k))
for(Integer i : l){
s+=i;
}
return s;
}
public static boolean getAllPermutations(int[] arr, List<Integer> list, boolean[] check, int k){
if(list.size()==arr.length){
count++;
if(count ==k){
l = new ArrayList<>(list);
return true;
}
}
for(int i =0;i<arr.length;i++){
if(!check[i]){
check[i] = true;
list.add(arr[i]);
if(getAllPermutations(arr,list,check,k)) return true;
list.remove(list.size()-1);
check[i] = false;
}
}
return false;
}
}
Reference
이 문제에 관하여(재귀), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
https://dev.to/prashantrmishra/recursion-4301
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)
import java.util.* ;
import java.io.*;
public class Solution {
public static List<List<String>> partition(String s) {
// Write your code here.
List<List<String>> list = new ArrayList<>();
getAllPalindromicSubstrings(0,s,new ArrayList<>(),list);
return list;
}
public static void getAllPalindromicSubstrings(int index, String s,
List<String> l,List<List<String>> list){
if(index>=s.length()){
list.add(new ArrayList<>(l));
return;
}
for(int i = index;i<s.length();i++){
if(!isPalindrome(index,i,s)) continue;
l.add(s.substring(index,i+1));
getAllPalindromicSubstrings(i+1,s,l,list);
l.remove(l.size()-1);
}
}
public static boolean isPalindrome(int start,int end, String s){
while(start<=end){
if(s.charAt(start++)!=s.charAt(end--)) return false;
}
return true;
}
}
TC: O(2^n)
import java.util.*;
public class Solution {
static ArrayList<Integer> l;
static int count;
public static String kthPermutation(int n, int k) {
l = null;
count = 0;
int arr[] = new int[n];
for(int i =0;i<arr.length;i++){
arr[i] = i+1;
}
boolean check[] = new boolean[arr.length];
String s = "";
if(getAllPermutations(arr,new ArrayList<>(), check, k))
for(Integer i : l){
s+=i;
}
return s;
}
public static boolean getAllPermutations(int[] arr, List<Integer> list, boolean[] check, int k){
if(list.size()==arr.length){
count++;
if(count ==k){
l = new ArrayList<>(list);
return true;
}
}
for(int i =0;i<arr.length;i++){
if(!check[i]){
check[i] = true;
list.add(arr[i]);
if(getAllPermutations(arr,list,check,k)) return true;
list.remove(list.size()-1);
check[i] = false;
}
}
return false;
}
}
Reference
이 문제에 관하여(재귀), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://dev.to/prashantrmishra/recursion-4301텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)