json 형식을 DataFrame으로 읽기(.csv로 전환)
10834 단어 pandas
import pandas as pd
import json
data = pd.DataFrame(json.loads(open('jsonFile.txt','r+').read()))#
dataCopy = pd.read_json('jsonFile.txt',typ='frame') #
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)[source]
Convert a JSON string to pandas object
Parameters:
path_or_buf : a valid JSON string or file-like, default: None
The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
orient : string,
Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:
'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
'records' : list like [{column -> value}, ... , {column -> value}]
'index' : dict like {index -> {column -> value}}
'columns' : dict like {column -> {index -> value}}
'values' : just the values array
The allowed and default values depend on the value of the typ parameter.
when typ == 'series',
allowed orients are {'split','records','index'}
default is 'index'
The Series index must be unique for orient 'index'.
when typ == 'frame',
allowed orients are {'split','records','index', 'columns','values'}
default is 'columns'
The DataFrame index must be unique for orients 'index' and 'columns'.
The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.
typ : type of object to recover (series or frame), default ‘frame’
dtype : boolean or dict, default True
If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.
convert_axes : boolean, default True
Try to convert the axes to the proper dtypes.
convert_dates : boolean, default True
List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
it ends with '_at',
it ends with '_time',
it begins with 'timestamp',
it is 'modified', or
it is 'date'
keep_default_dates : boolean, default True
If parsing dates, then parse the default datelike columns
numpy : boolean, default False
Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.
precise_float : boolean, default False
Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
date_unit : string, default None
The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.
lines : boolean, default False
Read the file as a json object per line.
New in version 0.19.0.
encoding : str, default is ‘utf-8’
The encoding to use to decode py3 bytes.
New in version 0.19.0.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
【Pandas】DatetimeIndex란? no.29안녕하세요, 마유미입니다. Pandas에 대한 기사를 시리즈로 작성하고 있습니다. 이번은 제29회의 기사가 됩니다. 에서 Pandas의 시간에 대한 모듈에 대해 씁니다. 이번 기사에서는, 「DatetimeIndex」...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.