[poj1821] Fence DP 단조로운 대기열 최적화
Fence
Description
A team of k (1 <= K <= 100) workers should paint a fence which contains N (1 <= N <= 16 000) planks numbered from 1 to N from left to right. Each worker i (1 <= i <= K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi $ (1 <= Pi <= 10 000). A plank should be painted by no more than one worker. All the numbers Si should be distinct.
Being the team’s leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income.
Write a program that determines the total maximal income obtained by the K workers. Input
The input contains: Input
N K L1 P1 S1 L2 P2 S2 … LK PK SK
Semnification
N -the number of the planks; K ? the number of the workers Li -the maximal number of planks that can be painted by worker i Pi -the sum received by worker i for a painted plank Si -the plank in front of which sits the worker i Output
The output contains a single integer, the total maximal income. Sample Input
8 4 3 2 2 3 2 3 3 3 5 1 1 7 Sample Output
17 Hint
Explanation of the sample:
the worker 1 paints the interval [1, 2];
the worker 2 paints the interval [3, 4];
the worker 3 paints the interval [5, 7];
the worker 4 does not paint any plank Source
Romania OI 2002
f[i][j]는 전 i개인을 나타내고 j의 최대치 f[i][j]=max(f[i][j-1], f[i-1][j])f[i][j]=max(f[i][j], f[i-1][k]+(j-k)*p[i])를 칠한다.f[i-1][k]+p[i]*(j-k)=(f[i-1][k]-p[i]*k)+p[i]*j 그러면 줄어드는 단조로운 대기열 유지보수 k값을 구성합니다.
#include
#include
#include
#include
using namespace std;
const int N = 16000 + 5;
int f[105][N];
struct nd{
int l,p,s;
}pp[105];
bool cmp( nd a, nd b ){ return a.s < b.s; }
int n,k;
int q[N];
int main(){
scanf("%d%d", &n, &k);
for( int i = 1; i <= k; i++ ) scanf("%d%d%d", &pp[i].l, &pp[i].p, &pp[i].s );
std::sort( pp+1, pp+k+1, cmp );
for( int i = 1; i <= k; i++ ){
int head = 0,tail = 0;
q[0] = max( pp[i].s - pp[i].l, 0 );
for( int j = 1; j <= n; j++ ){
f[i][j] = max( f[i-1][j], f[i][j-1] );
if( j >= pp[i].l + pp[i].s ) continue;
while( head <= tail && q[head] + pp[i].l < j ) head++;
if( j < pp[i].s ){
while( head <= tail && f[i-1][q[tail]] - q[tail]*pp[i].p < f[i-1][j] - j*pp[i].p) tail--;
q[++tail] = j;
continue;
}
f[i][j] = max( f[i][j], f[i-1][q[head]] + pp[i].p*(j-q[head]));
}
}
printf("%d", f[k][n]);
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
POJ3071: Football(확률 DP)Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. After n rounds, only one team...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.