POJ 2677 Tour
3614 단어 poj
2조 유클리드 DP
Tour
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 3581
Accepted: 1596
Description
John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must determine the shortest closed tour that connects his destinations. Each destination is represented by a point in the plane pi = < xi,yi >. John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point. It is known that the points have distinct x-coordinates.
Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John's strategy.
Input
The program input is from a text file. Each data set in the file stands for a particular set of points. For each set of points the data set contains the number of points, and the point coordinates in ascending order of the x coordinate. White spaces can occur freely in input. The input data are correct.
Output
For each set of data, your program should print the result to the standard output from the beginning of a line. The tour length, a floating-point number with two fractional digits, represents the result. An input/output sample is in the table below. Here there are two data sets. The first one contains 3 points specified by their x and y coordinates. The second point, for example, has the x coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first data set in the given example).
Sample Input 3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2
Sample Output 6.47
7.89
Source
Southeastern Europe 2005
[ Submit ] [ Go Back ] [ Status ] [ Discuss ] #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double x[100],y[100];
double dist(int a,int b)
{
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
double dp[100][100];
int n;
int main()
{
while(cin>>n)
{
for(int i=1;i<=n;i++)
{
cin>>x[i]>>y[i];
}
for(int i=0;i<=n;i++)
{
for(int j=0;j<=n;j++)
{
dp[i][j]=99999999;
}
}
dp[1][1]=0; dp[2][1]=dist(1,2);
for(int i=1;i<=n;i++)
{
for(int j=1;j<i;j++)
{
dp[i+1][j]=min(dp[i+1][j],dp[i][j]+dist(i+1,i));
dp[i+1][i]=min(dp[i+1][i],dp[i][j]+dist(i+1,j));
}
}
double ans=99999999;
for(int j=1;j<n;j++)
ans=min(ans,dp[n-1][j]+dist(j,n));
printf("%.2f
",ans+dist(n-1,n));
}
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
POJ3071: Football(확률 DP)
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n.
After n rounds, only one team...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.
3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2
6.47
7.89
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double x[100],y[100];
double dist(int a,int b)
{
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
double dp[100][100];
int n;
int main()
{
while(cin>>n)
{
for(int i=1;i<=n;i++)
{
cin>>x[i]>>y[i];
}
for(int i=0;i<=n;i++)
{
for(int j=0;j<=n;j++)
{
dp[i][j]=99999999;
}
}
dp[1][1]=0; dp[2][1]=dist(1,2);
for(int i=1;i<=n;i++)
{
for(int j=1;j<i;j++)
{
dp[i+1][j]=min(dp[i+1][j],dp[i][j]+dist(i+1,i));
dp[i+1][i]=min(dp[i+1][i],dp[i][j]+dist(i+1,j));
}
}
double ans=99999999;
for(int j=1;j<n;j++)
ans=min(ans,dp[n-1][j]+dist(j,n));
printf("%.2f
",ans+dist(n-1,n));
}
return 0;
}
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
POJ3071: Football(확률 DP)Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. After n rounds, only one team...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.