Palabos 사례 분석 (3) damBreak3d. cpp 사례
57563 단어 Palabos 사례 분석LBM 소스 코드 학습
한 줄 한 줄 주석 해석
파일 위치: / palabos - v2.0r 0 / examples / show Cases / vofMultiPhase / damBreak3d. cpp
/* This file is part of the Palabos library.
*
* Copyright (C) 2011-2017 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: [email protected]
*
* The most recent release of Palabos can be downloaded at
*
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*/
/* The breaking dam free surface problem. This code demonstrates the basic usage of the
* free surface module in Palabos. Surface tension and contact angles are optional.
*/
#include "palabos3D.h"
#include "palabos3D.hh"
using namespace plb;
// ,
// , , , ,
// , 3
#define DESCRIPTOR descriptors::ForcedD3Q19Descriptor
typedef double T;
// Smagorinsky constant for LES model.
const T cSmago = 0.14;
// Physical dimensions of the system (in meters).
const T lx = 3.22;
const T ly = 1.0;
const T lz = 1.0;
const T rhoEmpty = T(1);
plint writeImagesIter = 10;
plint getStatisticsIter = 20;
plint maxIter;
plint N;
plint nx, ny, nz;
T delta_t, delta_x;
Array<T,3> externalForce;
T nuPhys, nuLB, tau, omega, Bo, surfaceTensionLB, contactAngle;
std::string outDir;
plint obstacleCenterXYplane, obstacleLength, obstacleWidth, obstacleHeight, beginWaterReservoir, waterReservoirHeight;
plint waterLevelOne, waterLevelTwo, waterLevelThree, waterLevelFour;
void setupParameters() {
delta_x = lz / N;
// roundToInt Palabos , ,
nx = util::roundToInt(lx / delta_x);
ny = util::roundToInt(ly / delta_x);
nz = util::roundToInt(lz / delta_x);
// Gravity in lattice units.
T gLB = 9.8 * delta_t * delta_t/delta_x;
externalForce = Array<T,3>(0., 0., -gLB);
tau = (nuPhys*DESCRIPTOR<T>::invCs2*delta_t)/(delta_x*delta_x) + 0.5;
omega = 1./tau;
nuLB = (tau-0.5)*DESCRIPTOR<T>::cs2; // Viscosity in lattice units.
surfaceTensionLB = rhoEmpty * gLB * N * N / Bo;
obstacleCenterXYplane = util::roundToInt(0.744*N);
obstacleLength = util::roundToInt(0.403*N);
obstacleWidth = util::roundToInt(0.161*N);
obstacleHeight = util::roundToInt(0.161*N);
beginWaterReservoir = util::roundToInt((0.744+1.248)*N);
waterReservoirHeight = util::roundToInt(0.55*N);
waterLevelOne = util::roundToInt(0.496*N);
waterLevelTwo = util::roundToInt(2.*0.496*N);
waterLevelThree = util::roundToInt(3.*0.496*N);
waterLevelFour = util::roundToInt((3.*0.496 + 1.150)*N);
}
// Specifies the initial condition for the fluid (each cell is assigned the
// flag "fluid", "empty", or "wall").
// ( “ ”、“ ” “ ”)
// , , vof ,
// freeSurfaceFlag::wall,freeSurfaceFlag::fluid,freeSurfaceFlag::empty ,
// , src multiPhysics freeSurface
int initialFluidFlags(plint iX, plint iY, plint iZ) {
// Place an obstacle on the left end, which is hit by the fluid.
bool insideObstacle =
iX >= obstacleCenterXYplane-obstacleWidth/2 &&
iX <= obstacleCenterXYplane+obstacleWidth/2 &&
iY >= ny/2-obstacleLength/2 &&
iY <= ny/2+obstacleLength/2 &&
iZ <= obstacleHeight+1;
if (insideObstacle) {
return freeSurfaceFlag::wall;
}
else if (iX >= beginWaterReservoir && iZ <= waterReservoirHeight) {
return freeSurfaceFlag::fluid;
}
else {
return freeSurfaceFlag::empty;
}
}
void writeResults(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, MultiScalarField3D<T>& volumeFraction, plint iT)
{
static const plint nx = lattice.getNx();
static const plint ny = lattice.getNy();
static const plint nz = lattice.getNz();
Box3D slice(0, nx-1, ny/2, ny/2, 0, nz-1);
ImageWriter<T> imageWriter("leeloo");
/*
, ppm , gif ,
imageWriter.writeScaledGif(createFileName("u", iT, 6),
*computeVelocityNorm(lattice, slice),600,600);
imageWriter.writeScaledGif(createFileName("rho", iT, 6),
*computeDensity(lattice, slice),600,600);
imageWriter.writeScaledGif(createFileName("volumeFraction", iT, 6),
*extractSubDomain(volumeFraction, slice),600,600);
*/
imageWriter.writeScaledPpm(createFileName("u", iT, 6),
*computeVelocityNorm(lattice, slice));
imageWriter.writeScaledPpm(createFileName("rho", iT, 6),
*computeDensity(lattice, slice));
imageWriter.writeScaledPpm(createFileName("volumeFraction", iT, 6),
*extractSubDomain(volumeFraction, slice));
/* stl ,
// Use a marching-cube algorithm to reconstruct the free surface and write an STL file.
std::vector isoLevels;
isoLevels.push_back((T) 0.5);
typedef TriangleSet::Triangle Triangle;
std::vector triangles;
isoSurfaceMarchingCube(triangles, volumeFraction, isoLevels, volumeFraction.getBoundingBox());
TriangleSet(triangles).writeBinarySTL(createFileName(outDir+"/interface", iT, 6)+".stl");
*/
VtkImageOutput3D<T> vtkOut(createFileName("volumeFraction", iT, 6), 1.);
vtkOut.writeData<float>(volumeFraction, "vf", 1.);
}
// , FreeSurface ,
// freeSurfaceAverageMass,freeSurfaceAverageDensity,
// freeSurfaceAverageDensity,freeSurfaceAverageVolumeFraction
// freeSurface , ,
// src multiPhysics freeSurface
void writeStatistics(FreeSurfaceFields3D<T,DESCRIPTOR>& fields) {
pcout << " -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- " << std::endl;
T averageMass = freeSurfaceAverageMass<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Mass: " << averageMass << std::endl;
T averageDensity = freeSurfaceAverageDensity<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Density: " << std::setprecision(12) << averageDensity << std::endl;
T averageVolumeFraction = freeSurfaceAverageVolumeFraction<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Volume-Fraction: " << std::setprecision(12) << averageVolumeFraction << std::endl;
pcout << " -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- " << std::endl;
}
int main(int argc, char **argv)
{
plbInit(&argc, &argv);
global::directories().setInputDir("./");
if (global::argc() != 8) {
pcout << "Error missing some input parameter
";
}
try {
global::argv(1).read(outDir);
global::directories().setOutputDir(outDir+"/");
global::argv(2).read(nuPhys);
global::argv(3).read(Bo);
global::argv(4).read(contactAngle);
global::argv(5).read(N);
global::argv(6).read(delta_t);
global::argv(7).read(maxIter);
}
catch(PlbIOException& except) {
pcout << except.what() << std::endl;
pcout << "The parameters for this program are :
";
pcout << "1. Output directory name.
";
pcout << "2. kinematic viscosity in physical Units (m^2/s) .
";
pcout << "3. Bond number (Bo = rho * g * L^2 / gamma).
";
pcout << "4. Contact angle (in degrees).
";
pcout << "5. number of lattice nodes for lz .
";
pcout << "6. delta_t .
";
pcout << "7. maxIter .
";
pcout << "Reasonable parameters on a desktop computer are: " << (std::string)global::argv(0) << " tmp 1.e-5 100 80.0 40 1.e-3 80000
";
pcout << "Reasonable parameters on a parallel machine are: " << (std::string)global::argv(0) << " tmp 1.e-6 100 80.0 100 1.e-4 80000
";
exit (EXIT_FAILURE);
}
setupParameters();
pcout << "delta_t= " << delta_t << std::endl;
pcout << "delta_x= " << delta_x << std::endl;
pcout << "delta_t*delta_t/delta_x= " << delta_t*delta_t/delta_x << std::endl;
pcout << "externalForce= " << externalForce[2] << std::endl;
pcout << "relaxation time= " << tau << std::endl;
pcout << "omega= " << omega << std::endl;
pcout << "kinematic viscosity physical units = " << nuPhys << std::endl;
pcout << "kinematic viscosity lattice units= " << nuLB << std::endl;
global::timer("initialization").start();
// , MultiBlockLattice ,
// , , MultiBlockLattice ,
// , MultiBlockLattice
SparseBlockStructure3D blockStructure(createRegularDistribution3D(nx, ny, nz));
// , BGK
Dynamics<T,DESCRIPTOR>* dynamics
= new SmagorinskyBGKdynamics<T,DESCRIPTOR>(omega, cSmago);
// If surfaceTensionLB is 0, then the surface tension algorithm is deactivated.
// If contactAngle is less than 0, then the contact angle algorithm is deactivated.
// FreeSurfaceFields ,
// MultiBlockLattice
// , , , BGK , ,
// , , ;
FreeSurfaceFields3D<T,DESCRIPTOR> fields( blockStructure, dynamics->clone(), rhoEmpty,
surfaceTensionLB, contactAngle, externalForce );
// , , ,
// ,
//integrateProcessingFunctional(new ShortenBounceBack3D, fields.lattice.getBoundingBox(), fields.freeSurfaceArgs, 0);
// Set all outer-wall cells to "wall" (here, bulk-cells are also set to "wall", but it
// doesn't matter, because they are overwritten on the next line).
// freesurfaceflag wall( , flag , )
setToConstant(fields.flag, fields.flag.getBoundingBox(), (int)freeSurfaceFlag::wall);
// In the bulk (all except outer wall layer), initialize the flags as specified by
// the function "initialFluidFlags".
// initialFluidFlags , setToFunction, freesurfaceflag ,
// initialFluidFlags, setToFunction
setToFunction(fields.flag, fields.flag.getBoundingBox().enlarge(-1), initialFluidFlags);
// ,
fields.defaultInitialize();
pcout << "Time spent for setting up lattices: "
<< global::timer("initialization").stop() << std::endl;
T lastIterationTime = T();
for (plint iT = 0; iT <= maxIter; ++iT) {
global::timer("iteration").restart();
T sum_of_mass_matrix = T();
T lost_mass = T();
if (iT % getStatisticsIter==0) {
pcout << std::endl;
pcout << "ITERATION = " << iT << std::endl;
pcout << "Time of last iteration is " << lastIterationTime << " seconds" << std::endl;
writeStatistics(fields);
sum_of_mass_matrix = fields.lattice.getInternalStatistics().getSum(0);
pcout << "Sum of mass matrix: " << sum_of_mass_matrix << std::endl;
lost_mass = fields.lattice.getInternalStatistics().getSum(1);
pcout << "Lost mass: " << lost_mass << std::endl;
pcout << "Total mass: " << sum_of_mass_matrix + lost_mass << std::endl;
pcout << "Interface cells: " << fields.lattice.getInternalStatistics().getIntSum(0) << std::endl;
}
if (iT % writeImagesIter == 0) {
global::timer("images").start();
writeResults(fields.lattice, fields.volumeFraction, iT);
pcout << "Total time spent for writing images: "
<< global::timer("images").stop() << std::endl;
}
// This includes the collision-streaming cycle, plus all free-surface operations.
// lattice , executeInternalProcessors,
// ,
fields.lattice.executeInternalProcessors();
// , MPI ,
fields.lattice.evaluateStatistics();
//
fields.lattice.incrementTime();
lastIterationTime = global::timer("iteration").stop();
}
}
설명 하 다.
이 사례 의 기초 구 조 는 원시 적 인 단상 류 와 shanchen 의 양 상 류 및 기타 고급 모델 과 다 릅 니 다. 유일 하 게 비슷 한 것 은 같은 폴 더 의 falling Droplet. cpp 입 니 다. 비교 해 볼 수 있 습 니 다. 이것 보다 더 복잡 하지만 자신 이 고급 수학 모델 을 쓰 는 데 힘 쓰 고 하나의 소스 코드 를 가지 고 학습 할 수 있 습 니 다.개인 적 으로 어린이 들 이 내부 의 코드 구 조 를 너무 깊이 연구 하지 말 라 고 생각 하 는 데 도움 이 됩 니 다. 매우 복잡 합 니 다. 아마 당신 이 다 보고 졸업 할 것 입 니 다. 이것 은 전례 입 니 다. 이 사례 는 대 밀도 비의 양 상 류 를 간단하게 연구 할 수 있 지만 그 중에서 밀도 가 비교적 작은 상 태 를 버 려 야 합 니 다. 또한 이 사례 중의 자유 표면 흐름 모델 은 표면 장력 을 포장 해 야 합 니 다.접촉 각 등 은 두 가지 연구 에서 코드 를 쓰기 가 매우 어 려 운 부분 이기 때문에 졸업 할 수 있 도록 저 는 이 모델 을 선택 하여 데 이 터 를 쌓 았 습 니 다. 과학 연구 의 수요 에 부합 되 는 지 에 대해 어린이 들 이 이 사례 를 바탕 으로 작 성 된 코드 를 스스로 고려 해 야 합 니 다. 과제 코드 오픈 소스 (3)Palabos 의 자유 표면 흐름 모형 을 사용 하여 복잡 한 다 공 매체 의 액 적 침 투 를 모방 합 니 다.
완전무결 하 다