카페에 대한 노트
메모리는 훈련 주기 중의 모든feature map 데이터 + 네트워크 파라미터 데이터를bach 저장해야 합니다크기 및 네트워크 모델의 크기 관계가 비교적 크다.
2. 훈련된 모형 파일을 이용한다.caffemodel은 어떻게 네트워크 모델 파일을 초기화합니까?prototxt?
4
4
template <typename Dtype>
void Net**::CopyTrainedLayersFrom(const NetParameter& param)** {
int num_source_layers = param.layer_size();
for (int i = 0; i < num_source_layers; ++i) {
const LayerParameter& source_layer = param.layer(i);
const string& source_layer_name = source_layer.name();
int target_layer_id = 0;
while (target_layer_id != layer_names_.size() &&
layer_names_[target_layer_id] != source_layer_name) {
++target_layer_id;
}
if (target_layer_id == layer_names_.size()) {
LOG(INFO) << "Ignoring source layer " << source_layer_name;
continue;
}
DLOG(INFO) << "Copying source layer " << source_layer_name;
vector<shared_ptr > >& target_blobs =
layers_[target_layer_id]->blobs();
CHECK_EQ(target_blobs.size(), source_layer.blobs_size())
<< "Incompatible number of blobs for layer " << source_layer_name;
for (int j = 0; j < target_blobs.size(); ++j) {
if (!target_blobs[j]->ShapeEquals(source_layer.blobs(j))) {
Blob source_blob;
const bool kReshape = true;
source_blob.FromProto(source_layer.blobs(j), kReshape);
LOG(FATAL) << "Cannot copy param " << j << " weights from layer '"
<< source_layer_name << "'; shape mismatch. Source param shape is "
<< source_blob.shape_string() << "; target param shape is "
<< target_blobs[j]->shape_string() << ". "
<< "To learn this layer's parameters from scratch rather than "
<< "copying from a saved net, rename the layer.";
}
const bool kReshape = false;
target_blobs[j]->FromProto(source_layer.blobs(j), kReshape);
}
}
}
3、
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
[Caffe] mnist 인식 프로세스cd $CAFFE_ROOT 트레이닝 데이터 다운로드 ./data/mnist/get_mnist.sh 데이터 세트 만들기: ./examples/mnist/create_mnist.sh 트레이닝 모델: ./examples/...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.