matplotlib --- --- pylab 와 pyplot

4786 단어 Python 학습
먼저 pylab 신기 진 문: pylab. rcParams. update (params) 를 드 립 니 다.이 함 수 는 거의 그림 의 모든 속성 을 조절 할 수 있 습 니 다. 이 는 좌표 범위, axes 태그 번호 크기, xtick, ytick 태그 번호, 그림 선 너비, legend 번호 등 을 포함 하고 이에 국한 되 지 않 습 니 다.
구체 적 인 매개 변 수 는 공식 문 서 를 참조 합 니 다.http://matplotlib.org/users/customizing.html
##  plt 
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import scipy.io
import numpy as np
params={
    'axes.labelsize': '35',       
    'xtick.labelsize':'27',
    'ytick.labelsize':'27',
    'lines.linewidth':2 ,
    'legend.fontsize': '27',
    'figure.figsize'   : '12, 9'    # set figure size
}

###        
pylab.rcParams.update(params)            #set figure parameter
#line_styles=['ro-','b^-','gs-','ro--','b^--','gs--']  #set line style
         
#We give the coordinate date directly to give an example.
x1 = [-20,-15,-10,-5,0,0,5,10,15,20]
y1 = [0,0.04,0.1,0.21,0.39,0.74,0.78,0.80,0.82,0.85]
y2 = [0,0.014,0.03,0.16,0.37,0.78,0.81,0.83,0.86,0.92]
y3 = [0,0.001,0.02,0.14,0.34,0.77,0.82,0.85,0.90,0.96]
y4 = [0,0,0.02,0.12,0.32,0.77,0.83,0.87,0.93,0.98]
y5 = [0,0,0.02,0.11,0.32,0.77,0.82,0.90,0.95,1]
 
 ##    figure   plt
plt.plot(x1,y1,'bo-',label='m=2, p=10%',markersize=20) # in 'bo-', b is blue, o is O marker, - is solid line and so on
plt.plot(x1,y2,'gv-',label='m=4, p=10%',markersize=20)
###c=“red”    ,,linewidth = 6    
plt.plot(x1,y3,'ys-',label='m=6, p=10%',markersize=20)
plt.plot(x1,y4,'ch-',label='m=8, p=10%',markersize=20)
plt.plot(x1,y5,'mD-',label='m=10, p=10%',markersize=20)
 
 
###       
# fig1 = plt.figure(1)
# fig1 = plt.figure(figsize=(6,3)) #       figsize=(6,3)
# axes = plt.subplot(111)  
# #axes = plt.gca()
# axes.set_yticks([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
# axes.grid(True)  # add grid
# 
# import numpy as np
# fig = plt.figure()
# ax1 = fig.add_subplot(2,1,1) #  2 1      1 
# ax2 = fig.add_subplot(2,1,2) #  2 1      2 
# 
# ax1.plot(np.random.randint(1,5,5), np.arange(5))
# ax2.plot(np.arange(10)*3, np.arange(10))
# plt.show()




###          
plt.legend(loc="lower right")  #set legend location
plt.ylabel('Percentage')   # set ystick label
plt.xlabel('Difference')  # set xstck label

plt.xticks(rotation=90) #         90 
plt.title('i love you , 1948')###  


plt.savefig('dir',dpi = 1000,bbox_inches='tight')
plt.show()

plt. subplot (111) 와 plt. subplot (1, 1, 1) 는 등가 이다.영역 을 1 줄 1 열 로 나 누고 현재 그림 은 첫 번 째 그림 (줄 에서 열 까지 정렬) 입 니 다.
plt. subplot (211) 는 영역 을 2 줄 1 열 로 나 누 는 것 을 의미 하 며, 현재 그림 은 첫 번 째 그림 (첫 줄, 첫 번 째 열) 입 니 다.이런 식 으로 미 루 면 10 을 넘 지 않 으 면 쉼표 를 줄 일 수 있다.
 
 
 
막대 그래프 를 그리다
import scipy.io
import numpy as np
import matplotlib.pylab as pylab
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
params={
    'axes.labelsize': '35',
    'xtick.labelsize':'27',
    'ytick.labelsize':'27',
    'lines.linewidth':2 ,
    'legend.fontsize': '27',
    'figure.figsize'   : '24, 9'
}
pylab.rcParams.update(params)


y1 = [9.79,7.25,7.24,4.78,4.20]
y2 = [5.88,4.55,4.25,3.78,3.92]
y3 = [4.69,4.04,3.84,3.85,4.0]
y4 = [4.45,3.96,3.82,3.80,3.79]
y5 = [3.82,3.89,3.89,3.78,3.77]



ind = np.arange(5)                # the x locations for the groups
width = 0.15
plt.bar(ind,y1,width,color = 'blue',label = 'm=2')  
plt.bar(ind+width,y2,width,color = 'g',label = 'm=4') # ind+width adjusts the left start location of the bar.
plt.bar(ind+2*width,y3,width,color = 'c',label = 'm=6')
plt.bar(ind+3*width,y4,width,color = 'r',label = 'm=8')
plt.bar(ind+4*width,y5,width,color = 'm',label = 'm=10')
plt.xticks(np.arange(5) + 2.5*width, ('10%','15%','20%','25%','30%'))

plt.xlabel('Sample percentage')
plt.ylabel('Error rate')

fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)   
# Set the formatter
axes = plt.gca()   # get current axes
axes.yaxis.set_major_formatter(xticks) # set % format to ystick.
axes.grid(True)
plt.legend(loc="upper right")
plt.savefig('dir', format='eps',dpi = 1000,bbox_inches='tight')

plt.show()

기타 관련 유형의 그림 은 다음 링크 를 참고 하 십시오.
https://blog.csdn.net/majinlei121/article/details/83994935
산 점 도 를 그 리 는 것 은 주로 scatter 라 는 함수 이 고 다른 것 은 유사 합 니 다.
네트워크 그림 을 그 리 려 면 network x 라 이브 러 리 를 사용 해 야 합 니 다.

좋은 웹페이지 즐겨찾기