machine learning/기본이론, 붓꽃 데이터 품족 예측하기
25189 단어 machine learningmachine learning
머신러닝의 정의
- AI를 달성하기 위한 방법
- 구체적인 방법에 대한 프로그래밍 없이 예제를 보여줌으로써 컴퓨터가 스스로 학습할 수 있게 하는 방법
머신러닝에 유용한 분야 4가지
- 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 문제
- 전통적인 방법으로는 전혀 해결 방법이 없는 복잡한 문제 (음성인식, 얼굴인식)
- 변화하는 환경에 적응해야 하는 문제
- 복잡한 문제와 대량의 데이터에서 통찰 얻기(데이터 마이닝)
레이블된 훈련세트란?
- Supervided Learning(지도학습)은 명확한 정답(Label)이 주어진 훈련세트이다.
가장 많이 사용되는 지도 학습 작업 2가지
- 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 문제
- 전통적인 방법으로는 전혀 해결 방법이 없는 복잡한 문제 (음성인식, 얼굴인식)
- 변화하는 환경에 적응해야 하는 문제
- 복잡한 문제와 대량의 데이터에서 통찰 얻기(데이터 마이닝)
레이블된 훈련세트란?
- Supervided Learning(지도학습)은 명확한 정답(Label)이 주어진 훈련세트이다.
가장 많이 사용되는 지도 학습 작업 2가지
분류(Classification)
- 이진 분류 (binary classification) : 스팸 or 스팸아님
- 다중 분류(multiclass classification) : 개, 고양이, 새를 분류하는 문제
- 분류에서는 레이블의 범주(개, 고양이, 새)를 클래스(Class)라고 부름
회귀(Regression)
- 연속된 숫자를 예측
- 교육수준, 나이, 주거지를 바탕으로 연간소득(타깃) 예측
많이 사용되는 비지도 학습 5가지
군집
- 블로그 방문자를 그룹으로 묶기(40%는 영화 애호가, 20%는 독서 애호가 등)
- 계층 군집(hierarchical clustering) 알고리즘을 사용하면 각 그룹을 더 작은 그룹으로 세분화 할 수 있음
- 고객, 마켓, 브랜드, 사회 경제 활동 세분화(segmentation)
시각화
- 레이블이 없는 대규모의 고차원 데이터를 2D, 3D 로 변환하여 도식화 가능
- 가능한 한 구조를 그대로 유지하므로 데이터로부터 예상치 못한 패턴 발견
- 의미 있는 군집을 강조한 t-SNE 시각화의 예 : 동물이 운송수단과 잘 구분, 말이 사슴과는 가깝지만 새와는 떨어져 있음
차원 축소(dimensionality reduction)
- 시각화와 비슷하게 너무 많은 데이터를 잃지 않으면서 데이터를 간소화
- 상관관계가 있는 여러 특성을 하나로 합침
- e.g.) 특성1(차의 주행거리) + 특성2(연식) -> 특성3(차의 마모) : 특성 추출(feature extraction)이라고 함
- 차원 축소는 지도학습 같은 다른 알고리즘에 데이터를 주입하기 전에도 사용
- 이를 통해 실행속도와 디스크와 메모리 공간, 성능에 도움을 주기도 함
연관 규칙 학습(association rule learning)
- 대량의 데이터에서 특성간의 흥미로운 관계를 찾음
- e.g.) 슈퍼마켓 판매기록에서 “바비큐 소스와 감자를 구매한 사람이 스테이크도 구매”하는 경향을 파악
- 규칙 기반(rule-based) 학습의 한 종류로, 사이킷런에서 제공하지 않음
이상치 탐색(anomaly detection)
- e.g.) 부정 거래를 막기 위해 이상한 신용 거래 감지, 제조 결함 감지 등
- 학습 알고리즘에 주입하기 전에 데이터 셋에서 이상한 값을 자동으로 제거
- 시스템은 정상 샘플로 훈련되고, 새로운 샘플이 정상인지 이상치인지 판단
고객을 여러 그룹으로 분할한다면 어떤 알고리즘 사용?
- 그룹에 대한 정의가 없다면 비지도학습의 군집 중 계층 군집 알고리즘을 사용하여 각 그룹을 더 작은 그룹으로 세분화 시킨다.
- 어떤 그룹인지 알고 있다면 분류 알고리즘(지도 학습)을 사용한다.
스팸 감지의 문제는 지도학습? 비지도학습?
- 이진 분류로(bonary classification) 지도학습
온라인 학습 시스템이란?
- 샘플 한 개 또는 미니배치(mini-batch)라 부르는 작은 묶음 단위로 훈련
- 학습 단계가 빠르고 비용이 적게 들어 데이터가 준비되는 대로 즉시 학습
- 연속적으로 데이터를 받고(주식 가격) 빠른 변화에 적응해야 하는 시스템에 적합
- 컴퓨팅 자원이 제한된 경우에도 적합
- 사용한 샘플을 버릴지 보관할지 결정
- 컴퓨터 한대가 메인 메모리에 들어갈 수 없는 아주 큰 데이터 셋을 학습하는 시스템에도 온라인 학습 알고리즘 사용 가능
- 이를 외부 메모리(out-of-core) 학습이라고 함
- 알고리즘이 데이터 일부를 읽어 들이고 훈련 단계를 수행
- 전체 데이터가 모두 적용될 때까지 이 과정을 반복
- 점진적 학습(incremental learning) 이라고도 함
import sklearn
print(sklearn.__version__)
from sklearn.datasets import load_iris
import numpy as np
import pandas as pd
iris_dataset = load_iris()
type(iris_dataset)
sklearn.utils.Bunch
iris_dataset.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
- data : 꽃잎(petal)의 길이와 폭, 꽃받침(sepal)의 길이와 폭을 수치 값으로 가지고 있는 numpy 배열
- target : 붓꽃의 품종
- target_names : target의 이름
- feature_names : 특성의 이름
- DESCR : 데이터 세트에 대한 설명과 각 특성에 대한 설명
print(iris_dataset["DESCR"])
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%[email protected])
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
iris_dataset["target_names"]
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
iris_dataset["target"]
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
iris_dataset["feature_names"]
['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']
iris_dataset["data"]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]])
iris_dataset["data"].shape
(150, 4)
iris_dataset["data"][:5]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2]])
iris_df = pd.DataFrame(data=iris_dataset["data"], columns = iris_dataset["feature_names"] )
iris_df["label"] = iris_dataset["target"]
iris_df
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)
label
0
5.1
3.5
1.4
0.2
0
1
4.9
3.0
1.4
0.2
0
2
4.7
3.2
1.3
0.2
0
3
4.6
3.1
1.5
0.2
0
4
5.0
3.6
1.4
0.2
0
...
...
...
...
...
...
145
6.7
3.0
5.2
2.3
2
146
6.3
2.5
5.0
1.9
2
147
6.5
3.0
5.2
2.0
2
148
6.2
3.4
5.4
2.3
2
149
5.9
3.0
5.1
1.8
2
150 rows × 5 columns
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris_dataset["data"],iris_dataset["target"], random_state=42 )
iris_train_df = pd.DataFrame(X_train, columns=iris_dataset['feature_names'])
pd.plotting.scatter_matrix(iris_train_df, c = y_train, marker='o', cmap='plasma', figsize=(15, 15))
array([[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal width (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal width (cm)'>]],
dtype=object)
- 이진 분류로(bonary classification) 지도학습
온라인 학습 시스템이란?
- 샘플 한 개 또는 미니배치(mini-batch)라 부르는 작은 묶음 단위로 훈련
- 학습 단계가 빠르고 비용이 적게 들어 데이터가 준비되는 대로 즉시 학습
- 연속적으로 데이터를 받고(주식 가격) 빠른 변화에 적응해야 하는 시스템에 적합
- 컴퓨팅 자원이 제한된 경우에도 적합
- 사용한 샘플을 버릴지 보관할지 결정
- 컴퓨터 한대가 메인 메모리에 들어갈 수 없는 아주 큰 데이터 셋을 학습하는 시스템에도 온라인 학습 알고리즘 사용 가능
- 이를 외부 메모리(out-of-core) 학습이라고 함
- 알고리즘이 데이터 일부를 읽어 들이고 훈련 단계를 수행
- 전체 데이터가 모두 적용될 때까지 이 과정을 반복
- 점진적 학습(incremental learning) 이라고도 함
import sklearn
print(sklearn.__version__)
from sklearn.datasets import load_iris
import numpy as np
import pandas as pd
iris_dataset = load_iris()
type(iris_dataset)
sklearn.utils.Bunch
iris_dataset.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
- data : 꽃잎(petal)의 길이와 폭, 꽃받침(sepal)의 길이와 폭을 수치 값으로 가지고 있는 numpy 배열
- target : 붓꽃의 품종
- target_names : target의 이름
- feature_names : 특성의 이름
- DESCR : 데이터 세트에 대한 설명과 각 특성에 대한 설명
print(iris_dataset["DESCR"])
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%[email protected])
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
iris_dataset["target_names"]
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
iris_dataset["target"]
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
iris_dataset["feature_names"]
['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']
iris_dataset["data"]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]])
iris_dataset["data"].shape
(150, 4)
iris_dataset["data"][:5]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2]])
iris_df = pd.DataFrame(data=iris_dataset["data"], columns = iris_dataset["feature_names"] )
iris_df["label"] = iris_dataset["target"]
iris_df
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)
label
0
5.1
3.5
1.4
0.2
0
1
4.9
3.0
1.4
0.2
0
2
4.7
3.2
1.3
0.2
0
3
4.6
3.1
1.5
0.2
0
4
5.0
3.6
1.4
0.2
0
...
...
...
...
...
...
145
6.7
3.0
5.2
2.3
2
146
6.3
2.5
5.0
1.9
2
147
6.5
3.0
5.2
2.0
2
148
6.2
3.4
5.4
2.3
2
149
5.9
3.0
5.1
1.8
2
150 rows × 5 columns
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris_dataset["data"],iris_dataset["target"], random_state=42 )
iris_train_df = pd.DataFrame(X_train, columns=iris_dataset['feature_names'])
pd.plotting.scatter_matrix(iris_train_df, c = y_train, marker='o', cmap='plasma', figsize=(15, 15))
array([[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal width (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal width (cm)'>]],
dtype=object)
import sklearn
print(sklearn.__version__)
from sklearn.datasets import load_iris
import numpy as np
import pandas as pd
iris_dataset = load_iris()
type(iris_dataset)
sklearn.utils.Bunch
iris_dataset.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
print(iris_dataset["DESCR"])
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%[email protected])
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
iris_dataset["target_names"]
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
iris_dataset["target"]
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
iris_dataset["feature_names"]
['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']
iris_dataset["data"]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]])
iris_dataset["data"].shape
(150, 4)
iris_dataset["data"][:5]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2]])
iris_df = pd.DataFrame(data=iris_dataset["data"], columns = iris_dataset["feature_names"] )
iris_df["label"] = iris_dataset["target"]
iris_df
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | label | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
3 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
4 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
... | ... | ... | ... | ... | ... |
145 | 6.7 | 3.0 | 5.2 | 2.3 | 2 |
146 | 6.3 | 2.5 | 5.0 | 1.9 | 2 |
147 | 6.5 | 3.0 | 5.2 | 2.0 | 2 |
148 | 6.2 | 3.4 | 5.4 | 2.3 | 2 |
149 | 5.9 | 3.0 | 5.1 | 1.8 | 2 |
150 rows × 5 columns
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris_dataset["data"],iris_dataset["target"], random_state=42 )
iris_train_df = pd.DataFrame(X_train, columns=iris_dataset['feature_names'])
pd.plotting.scatter_matrix(iris_train_df, c = y_train, marker='o', cmap='plasma', figsize=(15, 15))
array([[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='sepal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='sepal width (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal length (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal length (cm)'>],
[<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='sepal width (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal length (cm)', ylabel='petal width (cm)'>,
<AxesSubplot:xlabel='petal width (cm)', ylabel='petal width (cm)'>]],
dtype=object)
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
KNeighborsClassifier(n_neighbors=1)
y_pred = knn.predict(X_test)
y_pred
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2,
0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0])
y_test
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2,
0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0])
y_pred == y_test
array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True])
# 정확도(1)
np.mean(y_pred == y_test)
1.0
X_new = np.array([[5, 2.9, 1.0, 0.2]])
knn.predict(X_new)
array([0])
* 정확도 : 전체 label 중에 맞은 예측의 갯수 38/38 = 1.0
# 정확도(2)
knn.score(X_test, y_test)
1.0
# 정확도(3)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
1.0
Author And Source
이 문제에 관하여(machine learning/기본이론, 붓꽃 데이터 품족 예측하기), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://velog.io/@bbkyoo/machine-learning기본이론-붓꽃-데이터-품족-예측하기저자 귀속: 원작자 정보가 원작자 URL에 포함되어 있으며 저작권은 원작자 소유입니다.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)