LeetCode - N-Queens

11620 단어 LeetCode
N-Queens
2014.2.13 19:23
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where  'Q'  and  '.'  both indicate a queen and an empty space respectively.
For example,There exist two distinct solutions to the 4-queens puzzle:
[

 [".Q..",  // Solution 1

  "...Q",

  "Q...",

  "..Q."],



 ["..Q.",  // Solution 2

  "Q...",

  "...Q",

  ".Q.."]

]

Solution:
  The Eight Queens problem is a typical model for backtracking  algorithm.
  For any pair of queens, their difference in x and y coordinates mustn't be 0 or equal, that's on the same row, column or diagonal line.
  The code is short and self-explanatory, please see for yourself.
  Total time complexity is O(n!). Space complexity is O(n!) as well, which comes from local parameters in recursive function calls.
Accepted code:
 1 // 1CE, 1WA, 1AC, try to make the code shorter, it'll help you understand it better.

 2 class Solution {

 3 public:

 4     vector<vector<string> > solveNQueens(int n) {

 5         a = nullptr;

 6         res.clear();

 7         if (n <= 0) {

 8             return res;

 9         }

10         

11         a = new int[n];

12         solveNQueensRecursive(0, a, n);

13         delete[] a;

14         

15         return res;

16     }

17 private:

18     int *a;

19     vector<vector<string> > res;

20     

21     void solveNQueensRecursive(int idx, int a[], const int &n) {

22         if (idx == n) {

23             // one solution is found

24             addSingleResult(a, n);

25             return;

26         }

27         

28         int i, j;

29         // check if the current layout is valid.

30         for (i = 0; i < n; ++i) {

31             a[idx] = i;

32             for (j = 0; j < idx; ++j) {

33                 if (a[j] == a[idx] || myabs(idx - j) == myabs(a[idx] - a[j])) {

34                     break;

35                 }

36             }

37             if (j == idx) {

38                 // valid layout.

39                 solveNQueensRecursive(idx + 1, a, n);

40             }

41         }

42     }

43     

44     void addSingleResult(const int a[], int n) {

45         vector<string> single_res;

46         char *str = nullptr;

47         

48         str = new char[n + 1];

49         int i, j;

50         for (i = 0; i < n; ++i) {

51             for (j = 0; j < n; ++j) {

52                 str[j] = '.';

53             }

54             str[j] = 0;

55             str[a[i]] = 'Q';

56             single_res.push_back(string(str));

57         }

58         

59         res.push_back(single_res);

60         single_res.clear();

61         delete []str;

62     }

63     

64     int myabs(const int x) {

65         return (x >= 0 ? x : -x);

66     }

67 };

좋은 웹페이지 즐겨찾기