Spark 구성 요소의GraphX 학습 2-triplets 실천

3280 단어
추가 코드는 다음을 참조하십시오.https://github.com/xubo245/SparkLearning
해석
2. 코드:
/**
 * @author xubo
 * ref http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html
 * time 20160503
 */
package org.apache.spark.graphx.learning
import org.apache.spark._
import org.apache.spark.graphx._
// To make some of the examples work we will also need RDD
import org.apache.spark.rdd.RDD

object gettingStart {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("gettingStart").setMaster("local[4]")
    // Assume the SparkContext has already been constructed
    val sc = new SparkContext(conf)
    // Create an RDD for the vertices
    val users: RDD[(VertexId, (String, String))] =
      sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
        (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
    // Create an RDD for edges
    val relationships: RDD[Edge[String]] =
      sc.parallelize(Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),
        Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))
    // Define a default user in case there are relationship with missing user
    val defaultUser = ("John Doe", "Missing")
    // Build the initial Graph
    val graph = Graph(users, relationships, defaultUser)

    // Count all users which are postdocs
    println(graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count)

    // Count all the edges where src > dst
    println(graph.edges.filter(e => e.srcId > e.dstId).count)

    //another method
    println(graph.edges.filter { case Edge(src, dst, prop) => src > dst }.count)

    //  reverse
    println(graph.edges.filter { case Edge(src, dst, prop) => src < dst }.count)

    // Use the triplets view to create an RDD of facts.
    val facts: RDD[String] =
      graph.triplets.map(triplet =>
        triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
    facts.collect.foreach(println(_))
    
       // Use the triplets view to create an RDD of facts.
    println("
triplets:"); val facts2: RDD[String] = graph.triplets.map(triplet => triplet.srcId +"("+triplet.srcAttr._1+" "+ triplet.srcAttr._2+")"+" is the" + triplet.attr + " of " + triplet.dstId+"("+triplet.dstAttr._1+" "+ triplet.dstAttr._2+ ")") facts2.collect.foreach(println(_)) } }

3. 결과:
2016-05-03 19:18:48 WARN  MetricsSystem:71 - Using default name DAGScheduler for source because spark.app.id is not set.
1
1
1
3
rxin is the collab of jgonzal
franklin is the advisor of rxin
istoica is the colleague of franklin
franklin is the pi of jgonzal

triplets:
3(rxin student) is thecollab of 7(jgonzal postdoc)
5(franklin prof) is theadvisor of 3(rxin student)
2(istoica prof) is thecolleague of 5(franklin prof)
5(franklin prof) is thepi of 7(jgonzal postdoc)

참고 자료
【1】 http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html
【2】https://github.com/xubo245/SparkLearning

좋은 웹페이지 즐겨찾기