소박 베일러 분류기의python 구현
각 클래스의 각 피쳐에 대한 확률(코드에서 pNum 변수)
비교적 거칠게 썼고 어떤 종류에 이런 특징이 없는 경우 p=1/견본 수량을 사용한다.
무슨 잘못이 있으면 귀찮은 사람이 제기하면 고맙습니다.
# -*- coding:utf-8 -*-
from numpy import *
from sklearn import datasets
import numpy as np
class NaiveBayesClassifier(object):
def __init__(self):
self.dataMat = list()
self.labelMat = list()
self.pLabel = {}
self.pNum = {}
def loadDataSet(self):
iris = datasets.load_iris()
self.dataMat = iris.data
self.labelMat = iris.target
labelSet = set(iris.target)
labelList = [i for i in labelSet]
labelNum = len(labelList)
for i in range(labelNum):
self.pLabel.setdefault(labelList[i])
self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat))
def seperateByClass(self):
seperated = {}
for i in range(len(self.dataMat)):
vector = self.dataMat[i]
if self.labelMat[i] not in seperated:
seperated[self.labelMat[i]] = []
seperated[self.labelMat[i]].append(vector)
return seperated
# numpy array
def getProbByArray(self, data):
prob = {}
for i in range(len(data[0])):
if i not in prob:
prob[i] = {}
dataSetList = list(set(data[:, i]))
for j in dataSetList:
if j not in prob[i]:
prob[i][j] = 0
prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i]))
prob[0] = [1 / float(len(data[:,0]))] # feature
return prob
def train(self):
featureNum = len(self.dataMat[0])
seperated = self.seperateByClass()
t_pNum = {} #
for label, data in seperated.iteritems():
if label not in t_pNum:
t_pNum[label] = {}
t_pNum[label] = self.getProbByArray(np.array(data))
self.pNum = t_pNum
def classify(self, data):
label = 0
pTest = np.ones(3)
for i in self.pLabel:
for j in self.pNum[i]:
if data[j] not in self.pNum[i][j]:
pTest[i] *= self.pNum[i][0][0]
else:
pTest[i] *= self.pNum[i][j][data[j]]
pMax = np.max(pTest)
ind = np.where(pTest == pMax)
return ind[0][0]
def test(self):
self.loadDataSet()
self.train()
pred = []
right = 0
for d in self.dataMat:
pred.append(self.classify(d))
for i in range(len(self.labelMat)):
if pred[i] == self.labelMat[i]:
right += 1
print right / float(len(self.labelMat))
if __name__ == '__main__':
NB = NaiveBayesClassifier()
NB.test()
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
다양한 언어의 JSONJSON은 Javascript 표기법을 사용하여 데이터 구조를 레이아웃하는 데이터 형식입니다. 그러나 Javascript가 코드에서 이러한 구조를 나타낼 수 있는 유일한 언어는 아닙니다. 저는 일반적으로 '객체'{}...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.