Hough 변환의 실현
function [rho,theta,houghSpace] = houghTransform(theImage,thetaSampleFrequency) %Define the hough space theImage = flipud(theImage); [width,height] = size(theImage); rhoLimit = norm([width height]); rho = (-rhoLimit:1:rhoLimit); theta = (0:thetaSampleFrequency:pi); numThetas = numel(theta); houghSpace = zeros(numel(rho),numThetas); %Find the "edge" pixels [xIndicies,yIndicies] = find(theImage); %Preallocate space for the accumulator array numEdgePixels = numel(xIndicies); accumulator = zeros(numEdgePixels,numThetas); %Preallocate cosine and sine calculations to increase speed. In %addition to precallculating sine and cosine we are also multiplying %them by the proper pixel weights such that the rows will be indexed by %the pixel number and the columns will be indexed by the thetas. %Example: cosine(3,:) is 2*cosine(0 to pi) % cosine(:,1) is (0 to width of image)*cosine(0) cosine = (0:width-1)'*cos(theta); %Matrix Outerproduct sine = (0:height-1)'*sin(theta); %Matrix Outerproduct accumulator((1:numEdgePixels),:) = cosine(xIndicies,:) + sine(yIndicies,:); %Scan over the thetas and bin the rhos for i = (1:numThetas) houghSpace(:,i) = hist(accumulator(:,i),rho); end pcolor(theta,rho,houghSpace); shading flat; title('Hough Transform'); xlabel('Theta (radians)'); ylabel('Rho (pixels)'); colormap('gray'); end
:http://stackoverflow.com/questions/9916253/hough-transform-in-matlab-without-using-hough-function
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
다양한 언어의 JSONJSON은 Javascript 표기법을 사용하여 데이터 구조를 레이아웃하는 데이터 형식입니다. 그러나 Javascript가 코드에서 이러한 구조를 나타낼 수 있는 유일한 언어는 아닙니다. 저는 일반적으로 '객체'{}...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.