Hexadecimal's theorem

A. Hexadecimal's theorem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. F0 = 0, F1 = 1, and all the next numbers areFi = Fi - 2 + Fi - 1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number n by three not necessary different Fibonacci numbers or say that it is impossible.
Input
The input contains of a single integer n (0 ≤ n < 109) — the number that should be represented by the rules described above. It is guaranteed that n is a Fibonacci number.
Output
Output three required numbers: a, b and c. If there is no answer for the test you have to print "I'm too stupid to solve this problem"without the quotes.
If there are multiple answers, print any of them.
Sample test(s)
input
3

output
1 1 1

input
13

output
2 3 8

이 문제에 관하여...어이가 없어...
AC Code
#include <iostream>
using namespace std;

int main()
{   
    int n;
    while(cin>>n) cout<<"0 0 "<<n<<endl;
    return 0;
}

이상의 코드는 이미 AC...왜냐하면 0은 피폴라치 수열의 원소이기 때문이다.

좋은 웹페이지 즐겨찾기