Hexadecimal's theorem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. F0 = 0, F1 = 1, and all the next numbers areFi = Fi - 2 + Fi - 1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number n by three not necessary different Fibonacci numbers or say that it is impossible.
Input
The input contains of a single integer n (0 ≤ n < 109) — the number that should be represented by the rules described above. It is guaranteed that n is a Fibonacci number.
Output
Output three required numbers: a, b and c. If there is no answer for the test you have to print "I'm too stupid to solve this problem"without the quotes.
If there are multiple answers, print any of them.
Sample test(s)
input
3
output
1 1 1
input
13
output
2 3 8
이 문제에 관하여...어이가 없어...
AC Code
#include <iostream>
using namespace std;
int main()
{
int n;
while(cin>>n) cout<<"0 0 "<<n<<endl;
return 0;
}
이상의 코드는 이미 AC...왜냐하면 0은 피폴라치 수열의 원소이기 때문이다.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
application ---- enter and save the file codeInput file name and content - input_content.html Receive content and save file and content - input_content01.jsp...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.