HDU 1878 오로라 회로 (및 집합: 단순 오로라 회로 판정)
2048 단어 도 론 - 오 라 토
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0 Sample Output
1 0 Author ZJU Source 절 대 컴퓨터 대학원 재시험 Recommend We have carefully selected several similar problems for you: 1879 1880 1877 1881 1863 분석:
템 플 릿 문제:
1. 그림 연결 (집합 검사)
2. 모두 짝수
#include
#include
#define N 1000
using namespace std;
int n, m;
int f[N],degree[N];// i
void init()
{
for (int i = 1; i <= n; i++)
f[i] = i;
}
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
void merge(int x, int y)
{
int t1, t2;
t1 = find(x); t2 = find(y);
if (t1 != t2) f[t2] = t1;
else return;
}
int isEuler()
{
for (int i = 1; i <= n; i++)
if (degree[i] & 1) return 0;
return 1;
}
int isconnect()
{
int cnt = 0;
for (int i = 1; i <= n; i++)
{
if (f[i] == i)
cnt++;
}
if (cnt == 1) return 1;
else return 0;
}
int main()
{
while (scanf("%d", &n) != EOF && n)
{
init();
memset(degree, 0, sizeof(degree));
scanf("%d", &m);
int t1, t2;
for (int i = 0; i < m; i++)
{
scanf("%d%d", &t1, &t2);
// t1,t2
if (t1 == t2)
continue;
degree[t1]++; degree[t2]++;
merge(t1, t2);
}
printf("%d
", isEuler() && isconnect());
}
return 0;
}