Faster RCNN fine-tune 의 error

8649 단어

1. KeyError: 'max_overlaps'

File "./tools/train_net.py", line 112, in 
max_iters=args.max_iters)
File "/usr/local/caffes/xlw/faster-rcnn-third/tools/../lib/fast_rcnn/train.py", line 155, in train_net
roidb = filter_roidb(roidb)
File "/usr/local/caffes/xlw/faster-rcnn-third/tools/../lib/fast_rcnn/train.py", line 145, in filter_roidb
filtered_roidb = [entry for entry in roidb if is_valid(entry)]
File "/usr/local/caffes/xlw/faster-rcnn-third/tools/../lib/fast_rcnn/train.py", line 134, in is_valid
overlaps = entry['max_overlaps']
KeyError: 'max_overlaps'

해결 방법:


FRCN 정리_ROOT/data/cache/디렉토리의 캐시 파일

2. AssertionError assert (boxes[:, 2] >= boxes[:, 0]).all()

File "/py-faster-rcnn/tools/../lib/datasets/imdb.py", line 108, in append_flipped_images
    assert (boxes[:, 2] >= boxes[:, 0]).all()
AssertionError

이 문제의 발생은 자신이 만든 데이터가 집중되어 있기 때문에boundingbox의 위치는 그림의 가장자리에 있다. 이때 좌표값(x, y) 중 하나는 0이고fasterrcnn은 Xmin, Ymin, Xmax, Ymax를 감량한다.

해결 방법

  • 수정lib/datasets/imdb.pyappend_flipped_images() 함수.boxes[:, 2] = widths[i] - oldx1 - 1 이 줄 아래에 코드를 추가합니다:
  • for b in range(len(boxes)):
      if boxes[b][2]< boxes[b][0]:
        boxes[b][0] = 0
    
  • 수정lib/datasets/pascal_voc.py_load_pascal_annotation() 함수.Xmin, Ymin, Xmax, Ymax의 감량 동작을 제거하고 다음과 같이 변경합니다.
  • # Load object bounding boxes into a data frame.
            for ix, obj in enumerate(objs):
                bbox = obj.find('bndbox')
                # Make pixel indexes 0-based
                x1 = float(bbox.find('xmin').text)
                y1 = float(bbox.find('ymin').text)
                x2 = float(bbox.find('xmax').text)
                y2 = float(bbox.find('ymax').text)
    

    3. Waiting for Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt to exist...


    해결 방법


    1. experiment/script/faster_ 수정rcnn_end2end.sh
    #!/bin/bash
    # Usage:
    # ./experiments/scripts/faster_rcnn_end2end.sh GPU NET DATASET [options args to {train,test}_net.py]
    # DATASET is either pascal_voc or coco.
    #
    # Example:
    # ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc \
    #   --set EXP_DIR foobar RNG_SEED 42 TRAIN.SCALES "[400, 500, 600, 700]"
    
    set -x
    set -e
    
    export PYTHONUNBUFFERED="True"
    
    DEV=$1
    DEV_ID=$2
    NET=$3
    DATASET=$4
    
    array=( $@ )
    len=${#array[@]}
    EXTRA_ARGS=${array[@]:4:$len}
    EXTRA_ARGS_SLUG=${EXTRA_ARGS// /_}
    
    case $DATASET in
      pascal_voc)
        TRAIN_IMDB="voc_2007_trainval"
        TEST_IMDB="voc_2007_test"
        PT_DIR="pascal_voc"
        ITERS=70000
        ;;
      coco)
        # This is a very long and slow training schedule
        # You can probably use fewer iterations and reduce the
        # time to the LR drop (set in the solver to 350,000 iterations).
        TRAIN_IMDB="coco_2014_train"
        TEST_IMDB="coco_2014_minival"
        PT_DIR="coco"
        ITERS=490000
        ;;
      *)
        echo "No dataset given"
        exit
        ;;
    esac
    
    LOG="experiments/logs/faster_rcnn_end2end_${NET}_${EXTRA_ARGS_SLUG}.txt.`date +'%Y-%m-%d_%H-%M-%S'`"
    exec &> >(tee -a "$LOG")
    echo Logging output to "$LOG"
    
    #  model , 
    #time python ./tools/train_net.py --device ${DEV} --device_id ${DEV_ID} \
    #  --weights data/pretrain_model/VGG_imagenet.npy \
    #  --imdb ${TRAIN_IMDB} \
    #  --iters ${ITERS} \
    #  --cfg experiments/cfgs/faster_rcnn_end2end.yml \
    #  --network VGGnet_train \
    #  ${EXTRA_ARGS}
    
    set +x
    NET_FINAL=`grep -B 1 "done solving" ${LOG} | grep "Wrote snapshot" | awk '{print $4}'`
    set -x
    
    time python ./tools/test_net.py --device ${DEV} --device_id ${DEV_ID} \
      #  weights 
      --weights yourPath/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval \
      --imdb ${TEST_IMDB} \
      --cfg experiments/cfgs/faster_rcnn_end2end.yml \
      --network VGGnet_test \
      ${EXTRA_ARGS}
    

    2. tools/test_ 수정net.py
    #!/usr/bin/env python
    
    # --------------------------------------------------------
    # Fast R-CNN
    # Copyright (c) 2015 Microsoft
    # Licensed under The MIT License [see LICENSE for details]
    # Written by Ross Girshick
    # --------------------------------------------------------
    
    """Test a Fast R-CNN network on an image database."""
    
    import _init_paths
    from fast_rcnn.test import test_net
    from fast_rcnn.config import cfg, cfg_from_file
    from datasets.factory import get_imdb
    from networks.factory import get_network
    import argparse
    import pprint
    import time, os, sys
    import tensorflow as tf
    
    def parse_args():
        """
        Parse input arguments
        """
        parser = argparse.ArgumentParser(description='Test a Fast R-CNN network')
        parser.add_argument('--device', dest='device', help='device to use',
                            default='cpu', type=str)
        parser.add_argument('--device_id', dest='device_id', help='device id to use',
                            default=0, type=int)
        parser.add_argument('--def', dest='prototxt',
                            help='prototxt file defining the network',
                            default=None, type=str)
        parser.add_argument('--weights', dest='model',
                            help='model to test',
                            default=None, type=str)
        parser.add_argument('--cfg', dest='cfg_file',
                            help='optional config file', default=None, type=str)
        parser.add_argument('--wait', dest='wait',
                            help='wait until net file exists',
                            default=True, type=bool)
        parser.add_argument('--imdb', dest='imdb_name',
                            help='dataset to test',
                            default='voc_2007_test', type=str)
        parser.add_argument('--comp', dest='comp_mode', help='competition mode',
                            action='store_true')
        parser.add_argument('--network', dest='network_name',
                            help='name of the network',
                            default=None, type=str)
    
        if len(sys.argv) == 1:
            parser.print_help()
            sys.exit(1)
    
        args = parser.parse_args()
        return args
    
    if __name__ == '__main__':
        args = parse_args()
    
        print('Called with args:')
        print(args)
    
        if args.cfg_file is not None:
            cfg_from_file(args.cfg_file)
    
        print('Using config:')
        pprint.pprint(cfg)
    
        #  
        # while not os.path.exists(args.model) and args.wait:
        #     print('Waiting for {} to exist...'.format(args.model))
        #     time.sleep(10)
    
    
        imdb = get_imdb(args.imdb_name)
        imdb.competition_mode(args.comp_mode)
    
        device_name = '/{}:{:d}'.format(args.device,args.device_id)
        print device_name
    
        network = get_network(args.network_name)
        print 'Use network `{:s}` in training'.format(args.network_name)
    
        if args.device == 'gpu':
            cfg.USE_GPU_NMS = True
            cfg.GPU_ID = args.device_id
        else:
            cfg.USE_GPU_NMS = False
    
        # start a session
        saver = tf.train.Saver()
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        
        #  tf .ckpt , 3 checkpoint , restore 
        checkpoint_dir = '/home/nfdw/nfdw/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval'
        while True:
            ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
            if ckpt and ckpt.model_checkpoint_path:
                break
            else:
                print('Waiting for checkpoint in directory {} to exist...'.format(checkpoint_dir))
                time.sleep(10)
        #  args.model
        saver.restore(sess, ckpt.model_checkpoint_path)
        print ('Loading model weights from {:s}').format(ckpt.model_checkpoint_path) 
        #  weights_filename 
        weights_filename = os.path.splitext(os.path.basename(ckpt.model_checkpoint_path))[0]
    
        test_net(sess, network, imdb, weights_filename)
    

    4. display error

    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    

    matplotlib.use() must be called before pylab, matplotlib.pyplot, or matplotlib.backends is imported for the first time.

    좋은 웹페이지 즐겨찾기